材料科学
包辛格效应
复合材料
流动应力
压缩(物理)
张力(地质)
本构方程
模数
弹性模量
变形(气象学)
软化
位错
可塑性
应变率
结构工程
有限元法
工程类
作者
Hongrui Dong,Xiaoqiang Li,Yong Li,Haibo Wang,Xingyi Peng,Saijun Zhang,Bao Meng,Yanfeng Yang,Dong‐Sheng Li,Tudor Balan
标识
DOI:10.1016/j.jmatprotec.2022.117661
摘要
Electrically-assisted (EA) forming is an effective method to improve forming quality of sheet metal. In order to reveal the effects of current on material flow behavior under complex strain paths and develop corresponding constitutive model, the EA tension-compression cyclic loading tests with particularly designed setup were carried out. Then, the effects of current on the elastic modulus degradation and cyclic deformation were investigated. Further, corresponding modulus degradation model and constitutive model were developed. The results showed that the flow stress under EA uniaxial tension was lower than that under warm uniaxial tension. Moreover, the current-induced growth of precipitate and the decrease of dislocation occur under EA uniaxial tension. Regarding the EA cyclic deformation behavior, the elastic modulus decreases with the increase of plastic strain, temperature and current density, which is described by a proposed modified modulus degradation model. The Bauschinger effect and permanent softening effect are weakened with the increase of temperature and current density. The asymmetric tension-compression behavior becomes more obvious with the increase of temperature and current density. Based on above results, a modified Y-U model was established and verified with EA draw-bending process. The above research work can provide some research basis for the application of electrically-assisted forming.
科研通智能强力驱动
Strongly Powered by AbleSci AI