独特性
物理
组合数学
索波列夫空间
指数
临界指数
数学物理
数学
数学分析
量子力学
相变
语言学
哲学
出处
期刊:Discrete and Continuous Dynamical Systems
[American Institute of Mathematical Sciences]
日期:2019-01-01
卷期号:39 (10): 5847-5866
被引量:72
摘要
The aim of this paper is to classify the positive solutions of the nonlocal critical equation: \begin{document}$ - \Delta u = \left( {{I_\mu }*{u^{2_\mu ^*}}} \right){u^{2_\mu ^* - 1}},x \in {{\mathbb{R}}^N}$ \end{document} where $ 0<\mu<N $, if $ N = 3\ \hbox{or} \ 4 $ and $ 0<\mu\leq4 $ if $ N\geq5 $, $ I_{\mu} $ is the Riesz potential defined by \begin{document}${I_\mu }(x) = \frac{{\Gamma \left( {\frac{\mu }{2}} \right)}}{{\Gamma \left( {\frac{{N - \mu }}{2}} \right){\pi ^{\frac{N}{2}}}{2^{N - \mu }}|x{|^\mu }}}$ \end{document} with $ \Gamma(s) = \int^{+\infty}_{0}x^{s-1}e^{-x}dx $, $ s>0 $ and $ 2^{\ast}_{\mu} = \frac{2N-\mu}{N-2} $ is the upper critical exponent in the sense of the Hardy-Littlewood-Sobolev inequality. We apply the moving plane method in integral forms to prove the symmetry and uniqueness of the positive solutions. Moreover, we also prove the nondegeneracy of the unique solutions for the equation when $ \mu $ close to $ N $.
科研通智能强力驱动
Strongly Powered by AbleSci AI