白杨素
标记法
再灌注损伤
过氧化物酶体增殖物激活受体
内分泌学
内科学
缺血
药理学
化学
细胞凋亡
氧化应激
医学
敌手
受体
免疫组织化学
抗氧化剂
生物化学
类黄酮
作者
Neha Rani,Dharamvir Singh Arya
标识
DOI:10.1016/j.ejphar.2020.173389
摘要
Pharmacological strategies aimed at co-activating peroxisome proliferator-activated receptor-gamma (PPAR-γ)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway have shown promising results in alleviating myocardial injury. The aim of the study was to evaluate the role of chrysin, a PPAR-γ agonist, in ischemia-reperfusion (IR)-induced myocardial infarction (MI) in rats and to explore the molecular mechanism driving this activity. To evaluate this hypothesis, chrysin (60 mg/kg, orally), PPAR-γ antagonist (GW9662, 1 mg/kg, intraperitoneally), or both were administered to rats for 28 days. On the 29th day, one-stage ligation of left anterior descending coronary artery for 45 min followed by 60 min of reperfusion was performed. Chrysin significantly decreased infarct size and improved cardiac functions following IR-induced MI. This improvement was corroborated by augmented PPAR-γ/Nrf2 expression as confirmed by immunohistochemistry and western blotting analysis. Chrysin exhibited strong anti-oxidant property as demonstrated by increased GSH and CAT levels and decreased 8-OHdG and TBARS levels. Our findings also imply that chrysin significantly inhibited inflammatory response as validated by decreased NF-κB, IKK-β, CRP, TNF-α and MPO levels. In addition, chrysin decreased TUNEL/DAPI positivity, a marker of apoptotic response and normalized cardiac injury markers. The histopathological and ultrastructural analysis further supported the functional and biochemical outcomes, showing preserved myocardial architecture. Intriguingly, co-administration with GW9662 significantly diminished the cardioprotective effect of chrysin as demonstrated by depressed myocardial function, decreased PPAR-γ/Nrf2 expression and increased oxidative stress. In conclusion, the present study demonstrates that co-activation of PPAR-γ/Nrf2 by chrysin may be crucial for its cardioprotective effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI