尖晶石
催化作用
蒸汽重整
甲醇
三元运算
铜
化学工程
氧化铜
材料科学
无机化学
氧化物
化学
制氢
冶金
有机化学
计算机科学
工程类
程序设计语言
作者
Xiaoning Hou,Shaojun Qing,Yajie Liu,Lei Zhang,Caishun Zhang,Gang Feng,Xiang Wang,Zhixian Gao,Yong Qin
出处
期刊:Fuel
[Elsevier]
日期:2020-09-02
卷期号:284: 119041-119041
被引量:23
标识
DOI:10.1016/j.fuel.2020.119041
摘要
A versatile and green method for the synthesis of an efficient catalyst applied in methanol steam reforming is promising in view of clean energy production. Cu1−xMgxAl3 ternary spinel oxide catalysts have been prepared by a one-pot solid-phase reaction method using Cu(OH)2, Al2O3·xH2O and MgCO3 as the raw materials. The structure, reducibility, surface chemical state, and the aluminum ion distribution are comprehensively characterized by XRD, UV–vis, XPS, H2-TPR, N2O chemisorption, and 27Al MAS NMR techniques. The performances of the catalysts in methanol steam reforming are evaluated. Compared with binary Cu-Al spinel, the incorporation of Mg into the spinel lattice results in the change of Al3+ cation distribution between tetrahedral and octahedral sites, and thus the variation of copper surrounding environment can be inferred. Consequently, the copper releasing rate from the Mg containing spinel structure declines substantially, which is believed to be in favor of maintaining a stable catalytic performance longer. Besides, the ternary spinel oxide might facilitate the in-situ formation of smaller nano copper metals compared to CuAl3 binary spinel catalyst. Among all the catalysts, Cu0.9Mg0.1Al3 presents the highest activity as well as the best catalytic stability. The findings of this report suggest that introducing a foreign cation into the Cu-Al spinel structure might be a promising way to regulate the copper releasing property for achieving a better sustained release catalyst system.
科研通智能强力驱动
Strongly Powered by AbleSci AI