荧光
材料科学
检出限
量子点
纳米技术
光电子学
化学
光学
色谱法
物理
作者
Suyun Chu,Hongqiang Wang,Ling Xiao,Shaoming Yu,Liang Yang,Changlong Jiang
标识
DOI:10.1021/acsami.9b20458
摘要
Instrument-free, portable, and direct read-out mini-devices have wider application prospects in various fields, especially for real-time/on-site sensing. Herein, combined with a paper strip, a smartphone sensing platform integrated with a UV lamp and dark cavity by 3D-printing technology has been developed for the rapid, sensitive, instrument-free, and visual quantitative analysis in real-time/on-site conditions. The platform proved the feasibility for visual quantitative detection of pesticide via a fluorescence "on-off-on" response with a single dual-emissive ratiometric paper strip. Red-emitting CdTe quantum dots (rQDs) were embedded into the silica nanoparticles (SiO2 NPs) as an internal reference, while blue-emitting carbon dots (bCDs) as a signal report unit were covalently linked to the outer surface of SiO2 NPs. The blue fluorescence could be quenched by gold nanoparticles (Au NPs) and then recovered with pesticide. The red (R), green (G), and blue (B) channel values of the generated images were determined by a color recognizer application (APP) installed in the smartphone, and the R/B values could be used for pesticide quantification with a sensitive detection limit (LOD) of 59 nM. The smartphone sensing platform based on 3D printing might provide a general strategy for visual quantitative detection in a variety of fields including environments, diagnosis, and safety monitoring.
科研通智能强力驱动
Strongly Powered by AbleSci AI