Multi-branch and Multi-scale Attention Learning for Fine-Grained Visual Categorization

计算机科学 分类 人工智能 比例(比率) 机器学习 地图学 地理
作者
Fan Zhang,Meng Li,Guisheng Zhai,Yizhao Liu
出处
期刊:Lecture Notes in Computer Science 卷期号:: 136-147 被引量:104
标识
DOI:10.1007/978-3-030-67832-6_12
摘要

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) is one of the most authoritative academic competitions in the field of Computer Vision (CV) in recent years. But applying ILSVRC's annual champion directly to fine-grained visual categorization (FGVC) tasks does not achieve good performance. To FGVC tasks, the small inter-class variations and the large intra-class variations make it a challenging problem. Our attention object location module (AOLM) can predict the position of the object and attention part proposal module (APPM) can propose informative part regions without the need of bounding-box or part annotations. The obtained object images not only contain almost the entire structure of the object, but also contains more details, part images have many different scales and more fine-grained features, and the raw images contain the complete object. The three kinds of training images are supervised by our multi-branch network. Therefore, our multi-branch and multi-scale learning network(MMAL-Net) has good classification ability and robustness for images of different scales. Our approach can be trained end-to-end, while provides short inference time. Through the comprehensive experiments demonstrate that our approach can achieves state-of-the-art results on CUB-200-2011, FGVC-Aircraft and Stanford Cars datasets. Our code will be available at https://github.com/ZF1044404254/MMAL-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Ava应助温暖的数据线采纳,获得10
1秒前
1秒前
CIBww发布了新的文献求助10
1秒前
如初发布了新的文献求助10
1秒前
sinan发布了新的文献求助10
2秒前
袁鹏飞完成签到,获得积分10
2秒前
2秒前
3秒前
Jasper应助暴躁的香旋采纳,获得10
3秒前
赘婿应助多喝水er采纳,获得10
3秒前
天天快乐应助小麻花采纳,获得10
4秒前
嗯嗯完成签到 ,获得积分10
4秒前
4秒前
宠仙发布了新的文献求助10
6秒前
6秒前
7秒前
Xiaoxiao应助小离采纳,获得10
8秒前
trust完成签到,获得积分10
8秒前
国产耗材发布了新的文献求助10
9秒前
CipherSage应助Chai采纳,获得10
9秒前
今后应助zjcomposite采纳,获得10
9秒前
草莓大王完成签到,获得积分10
9秒前
七分饱完成签到,获得积分10
10秒前
11秒前
后会无期完成签到,获得积分10
11秒前
毛毛完成签到,获得积分10
11秒前
王王牛奶发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
13秒前
13秒前
完美世界应助糟糕的立辉采纳,获得10
14秒前
H华ua应助Sci采纳,获得10
14秒前
squirrelcone完成签到 ,获得积分10
15秒前
852应助Meretseger采纳,获得10
15秒前
daisy发布了新的文献求助10
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559313
求助须知:如何正确求助?哪些是违规求助? 3133962
关于积分的说明 9404827
捐赠科研通 2834076
什么是DOI,文献DOI怎么找? 1557790
邀请新用户注册赠送积分活动 727704
科研通“疑难数据库(出版商)”最低求助积分说明 716399