神经保护
褪黑素
谷氨酸受体
下调和上调
受体
生物
雌激素受体
褪黑激素受体
生物学中的钙
细胞生物学
氯吲哚
程序性细胞死亡
内分泌学
内科学
药理学
细胞凋亡
生物化学
医学
癌症
基因
乳腺癌
遗传学
作者
Arabinda Das,Gerald Wallace,Rüssel J. Reiter,Abhay Varma,Swapan K. Ray,Naren L. Banik
标识
DOI:10.1111/j.1600-079x.2012.01022.x
摘要
Melatonin has shown particular promise as a neuroprotective agent to prevent motoneuron death in animal models of both amyotrophic lateral sclerosis (ALS) and spinal cord injuries (SCI). However, an understanding of the roles of endogenous melatonin receptors including MT1, MT2, and orphan G-protein receptor 50 (GPR50) in neuroprotection is lacking. To address this deficiency, we utilized plasmids for transfection and overexpression of individual melatonin receptors in the ventral spinal cord 4.1 (VSC4.1) motoneuron cell line. Receptor-mediated cytoprotection following exposure to glutamate at a toxic level (25 μm) was determined by assessing cell viability, apoptosis, and intracellular free Ca(2+) levels. Our findings indicate a novel role for MT1 and MT2 for increasing expression of the calcium-binding proteins calbindin D28K and parvalbumin. Increased levels of calbindin D28K and parvalbumin in VSC4.1 cells overexpressing MT1 and MT2 were associated with cytoprotective effects including inhibition of proapoptotic signaling, downregulation of inflammatory factors, and expression of prosurvival markers. Interestingly, the neuroprotective effects conferred by overexpression of MT1 and/or MT2 were also associated with increases in the estrogen receptor β (ERβ): estrogen receptor α (ERα) ratio and upregulation of angiogenic factors. GPR50 did not exhibit cytoprotective effects. To further confirm the involvement of the melatonin receptors, we silenced both MT1 and MT2 in VSC4.1 cells using RNA interference technology. Knockdown of MT1 and MT2 led to an increase in glutamate toxicity, which was only partially reversed by melatonin treatment. Taken together, our findings suggest that the neuroprotection against glutamate toxicity exhibited by melatonin may depend on MT1 and MT2 but not GPR50.
科研通智能强力驱动
Strongly Powered by AbleSci AI