Highly conductive polystyrene/carbon nanotube/PEDOT:PSS nanocomposite with segregated structure for electromagnetic interference shielding

碳纳米管 材料科学 佩多:嘘 聚苯乙烯 纳米复合材料 电磁屏蔽 导电体 渗流阈值 复合材料 色散(光学) 导电聚合物 聚合物 电阻率和电导率 电气工程 工程类 物理 光学
作者
Navid Keshmiri,Amir Hosein Ahmadian Hoseini,Parisa Najmi,Jian Liu,Abbas S. Milani,Mohammad Arjmand
出处
期刊:Carbon [Elsevier]
卷期号:212: 118104-118104 被引量:34
标识
DOI:10.1016/j.carbon.2023.118104
摘要

Highly conductive polymer nanocomposites (CPNs) are promising alternatives to metals for electromagnetic interference (EMI) shielding applications. However, constructing a well-established conductive network within a polymer matrix using conventional processes is still challenging. This research aimed to improve the EMI shielding performance of CPNs by developing highly conductive segregated structures through a facile innovative dispersion mixing process. The nanocomposites were fabricated by dispersing polystyrene beads (PS), CNT, and PEDOT:PSS in deionized water, followed by vacuum filtration, solvent treatment, and hot press molding. The employed technique effectively constructed a highly conductive network in the PS/CNT nanocomposite, resulting in the lowest ever reported percolation threshold of 0.009 vol% among CNT-based segregated structures. Moreover, adding PEDOT:PSS to the nanocomposite as an additional constituent significantly promoted the conductive network by improving the dispersion of CNTs and the interparticle contact. The PS/CNT/PEDOT:PSS (100:2:4 w/w/w) exhibited a high electrical conductivity of 2.352 S/cm with notable specific EMI shielding effectiveness (SE) of 55.7 dB/mm (with dominant absorption mechanism), which is among the best performance reported for CNT-based conductive segregated structures, to the best of our knowledge. In brief, this work proposed a novel approach of using a facile, cost-effective, and eco-friendly method to fabricate highly CPNs for EMI shielding applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Murphy发布了新的文献求助10
刚刚
whoknowsname发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
ddh发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
insane完成签到,获得积分10
4秒前
孟婆的碗完成签到,获得积分10
4秒前
5秒前
Akim应助平常的雁凡采纳,获得10
5秒前
领导范儿应助ding采纳,获得10
5秒前
keke发布了新的文献求助10
6秒前
奥丁蒂法发布了新的文献求助10
6秒前
6秒前
6秒前
YY19891219发布了新的文献求助10
7秒前
7秒前
不语花落完成签到,获得积分20
7秒前
7秒前
8秒前
sjr123发布了新的文献求助10
8秒前
9秒前
Hello应助liuxuying采纳,获得10
9秒前
妞妞发布了新的文献求助20
9秒前
10秒前
tianmeng应助yzsdo采纳,获得10
10秒前
平常代真完成签到,获得积分10
10秒前
嗷嗷发布了新的文献求助10
10秒前
甜晞发布了新的文献求助10
11秒前
Clover发布了新的文献求助10
11秒前
张达发布了新的文献求助10
11秒前
12秒前
ahsisalah完成签到,获得积分10
12秒前
youxine发布了新的文献求助10
12秒前
13秒前
13秒前
renhong应助温暖的数据线采纳,获得30
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 700
Neuromuscular and Electrodiagnostic Medicine Board Review 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3469346
求助须知:如何正确求助?哪些是违规求助? 3062465
关于积分的说明 9079074
捐赠科研通 2752760
什么是DOI,文献DOI怎么找? 1510621
科研通“疑难数据库(出版商)”最低求助积分说明 697925
邀请新用户注册赠送积分活动 697866