Machine learning accelerated design of non-equiatomic refractory high entropy alloys based on first principles calculation

高熵合金 材料科学 合金 泊松分布 热力学 泊松比 航程(航空) 统计物理学 冶金 复合材料 数学 物理 统计
作者
Yu Gao,Songsong Bai,Kai Chong,Chang Liu,Yingwen Cao,Yong Zou
出处
期刊:Vacuum [Elsevier BV]
卷期号:207: 111608-111608 被引量:28
标识
DOI:10.1016/j.vacuum.2022.111608
摘要

The properties of High Entropy Alloys (HEAs) strongly depend on the composition and content of elements. However, it was difficult to obtain the optimized element composition through the traditional "trial and error" method. The non-equiatomic HEAs have a large range for composition exploration by changing the content of elements, but the current research methods are difficult to analyze comprehensively. In this work, the prediction model with high accuracy is established by mixture design, the first principles calculation and machine learning. The model is used to predict the elastic properties and Poisson's ratio of non-equiatomic Mo–Nb–Ta–Ti–V HEAs, and the prediction results agree well with experimental data. The optimal element composition range of elastic properties and Poisson's ratio could be obtained. The influence of elements on the elastic properties and Poisson's ratio is analyzed through the calculation of features' importance. The results show that the content of Ti has the greatest contribution to the elastic properties and Poisson's ratio of the alloy. This model can not only obtain a large amount of data quickly and accurately but also help us to establish the relationship between element content and mechanical properties of non-equiatomic Mo–Nb–Ta–Ti–V RHEAs and provide theoretical guidance for experiments. • Refractory high entropy alloys were prepared by arc melting in vacuum. • The first principle calculation data are in good agreement with experimental results. • Prediction of physical properties of high entropy alloys by machine learning. • The optimized range of alloy elements was obtained based on machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dandan发布了新的文献求助20
刚刚
1秒前
wbn1212发布了新的文献求助10
5秒前
马66发布了新的文献求助10
5秒前
卢静静发布了新的文献求助10
5秒前
科研论文的狗完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
张利双发布了新的文献求助10
8秒前
8秒前
领导范儿应助rrrrr采纳,获得10
9秒前
李爱国应助RoKing采纳,获得10
9秒前
香蕉觅云应助小黄采纳,获得10
10秒前
clone2012完成签到,获得积分10
11秒前
成就映秋发布了新的文献求助10
11秒前
11秒前
幸运海星发布了新的文献求助10
12秒前
诸葛天发布了新的文献求助30
12秒前
13秒前
14秒前
14秒前
15秒前
15秒前
Daniel911发布了新的文献求助10
16秒前
HHHAN发布了新的文献求助10
17秒前
乐观小之应助ruohanyu采纳,获得10
17秒前
RoKing完成签到,获得积分20
18秒前
ailemonmint发布了新的文献求助10
19秒前
朴实雨竹发布了新的文献求助10
19秒前
rrrrr发布了新的文献求助10
20秒前
刘刘宇航发布了新的文献求助10
20秒前
zhuxd完成签到,获得积分10
20秒前
赘婿应助GAO采纳,获得10
21秒前
tttt完成签到 ,获得积分10
22秒前
22秒前
wgm完成签到,获得积分10
22秒前
24秒前
chenyan完成签到,获得积分10
24秒前
彭于晏应助轵关宣方采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578