Machine learning accelerated design of non-equiatomic refractory high entropy alloys based on first principles calculation

高熵合金 材料科学 合金 泊松分布 热力学 泊松比 航程(航空) 统计物理学 冶金 复合材料 数学 物理 统计
作者
Yu Gao,Songsong Bai,Kai Chong,Chang Liu,Yingwen Cao,Yong Zou
出处
期刊:Vacuum [Elsevier]
卷期号:207: 111608-111608 被引量:28
标识
DOI:10.1016/j.vacuum.2022.111608
摘要

The properties of High Entropy Alloys (HEAs) strongly depend on the composition and content of elements. However, it was difficult to obtain the optimized element composition through the traditional "trial and error" method. The non-equiatomic HEAs have a large range for composition exploration by changing the content of elements, but the current research methods are difficult to analyze comprehensively. In this work, the prediction model with high accuracy is established by mixture design, the first principles calculation and machine learning. The model is used to predict the elastic properties and Poisson's ratio of non-equiatomic Mo–Nb–Ta–Ti–V HEAs, and the prediction results agree well with experimental data. The optimal element composition range of elastic properties and Poisson's ratio could be obtained. The influence of elements on the elastic properties and Poisson's ratio is analyzed through the calculation of features' importance. The results show that the content of Ti has the greatest contribution to the elastic properties and Poisson's ratio of the alloy. This model can not only obtain a large amount of data quickly and accurately but also help us to establish the relationship between element content and mechanical properties of non-equiatomic Mo–Nb–Ta–Ti–V RHEAs and provide theoretical guidance for experiments. • Refractory high entropy alloys were prepared by arc melting in vacuum. • The first principle calculation data are in good agreement with experimental results. • Prediction of physical properties of high entropy alloys by machine learning. • The optimized range of alloy elements was obtained based on machine learning.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助漂亮的孤风采纳,获得10
刚刚
cc完成签到 ,获得积分10
1秒前
1秒前
1秒前
张小哥12发布了新的文献求助10
1秒前
1秒前
天天快乐应助aaaaa12346采纳,获得10
1秒前
2秒前
小马甲应助Yu采纳,获得10
2秒前
Maruko_0_发布了新的文献求助10
2秒前
图图应助安详的从波采纳,获得10
2秒前
醉意拥桃枝完成签到 ,获得积分10
2秒前
Frank发布了新的文献求助30
2秒前
2秒前
2秒前
3秒前
CipherSage应助瞬间de回眸采纳,获得10
3秒前
完美世界应助jj采纳,获得10
3秒前
潇洒的凌雪完成签到,获得积分20
3秒前
3秒前
彭于彦祖应助Yyyyyy11采纳,获得30
4秒前
4秒前
5秒前
AiQi发布了新的文献求助10
5秒前
5秒前
SireTD完成签到,获得积分10
5秒前
5秒前
学霸扬完成签到,获得积分10
6秒前
nkcyn发布了新的文献求助30
6秒前
6秒前
丘比特应助森距离采纳,获得10
6秒前
6秒前
7秒前
月皎完成签到,获得积分10
7秒前
英姑应助自由采纳,获得10
8秒前
友好怜珊发布了新的文献求助10
8秒前
李健应助岛err采纳,获得10
8秒前
科研通AI2S应助coco采纳,获得10
9秒前
丘比特应助谢灵运采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505994
求助须知:如何正确求助?哪些是违规求助? 4601482
关于积分的说明 14476730
捐赠科研通 4535445
什么是DOI,文献DOI怎么找? 2485408
邀请新用户注册赠送积分活动 1468357
关于科研通互助平台的介绍 1440869