Machine learning accelerated design of non-equiatomic refractory high entropy alloys based on first principles calculation

高熵合金 材料科学 合金 泊松分布 热力学 泊松比 航程(航空) 统计物理学 冶金 复合材料 数学 物理 统计
作者
Yu Gao,Songsong Bai,Kai Chong,Chang Liu,Yingwen Cao,Yong Zou
出处
期刊:Vacuum [Elsevier]
卷期号:207: 111608-111608 被引量:28
标识
DOI:10.1016/j.vacuum.2022.111608
摘要

The properties of High Entropy Alloys (HEAs) strongly depend on the composition and content of elements. However, it was difficult to obtain the optimized element composition through the traditional "trial and error" method. The non-equiatomic HEAs have a large range for composition exploration by changing the content of elements, but the current research methods are difficult to analyze comprehensively. In this work, the prediction model with high accuracy is established by mixture design, the first principles calculation and machine learning. The model is used to predict the elastic properties and Poisson's ratio of non-equiatomic Mo–Nb–Ta–Ti–V HEAs, and the prediction results agree well with experimental data. The optimal element composition range of elastic properties and Poisson's ratio could be obtained. The influence of elements on the elastic properties and Poisson's ratio is analyzed through the calculation of features' importance. The results show that the content of Ti has the greatest contribution to the elastic properties and Poisson's ratio of the alloy. This model can not only obtain a large amount of data quickly and accurately but also help us to establish the relationship between element content and mechanical properties of non-equiatomic Mo–Nb–Ta–Ti–V RHEAs and provide theoretical guidance for experiments. • Refractory high entropy alloys were prepared by arc melting in vacuum. • The first principle calculation data are in good agreement with experimental results. • Prediction of physical properties of high entropy alloys by machine learning. • The optimized range of alloy elements was obtained based on machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
37927发布了新的文献求助10
刚刚
科研通AI2S应助hh0采纳,获得10
1秒前
科研通AI2S应助shencheng采纳,获得10
2秒前
SSSSCCCCIIII完成签到,获得积分20
3秒前
3秒前
3秒前
kajimi完成签到,获得积分10
8秒前
桐桐应助科研大手采纳,获得30
8秒前
9秒前
fsy123发布了新的文献求助10
9秒前
hehe完成签到,获得积分10
12秒前
15秒前
16秒前
16秒前
wwc应助科研通管家采纳,获得10
16秒前
搜集达人应助科研通管家采纳,获得30
16秒前
16秒前
16秒前
17秒前
科研大手完成签到,获得积分10
18秒前
小奕完成签到,获得积分0
22秒前
子车茗应助热热带汤采纳,获得30
22秒前
科研大手发布了新的文献求助30
23秒前
25秒前
荡乎宇宙如虚舟完成签到,获得积分10
25秒前
28秒前
Zero发布了新的文献求助20
31秒前
机灵安白完成签到 ,获得积分20
31秒前
35秒前
LYZSh完成签到,获得积分10
37秒前
fsy123完成签到,获得积分20
40秒前
nuomi发布了新的文献求助10
44秒前
Muncy完成签到 ,获得积分10
47秒前
星辰大海应助迅速的醉山采纳,获得10
47秒前
传奇3应助的的的维尔采纳,获得10
47秒前
48秒前
52秒前
张震发布了新的文献求助10
54秒前
J_完成签到,获得积分10
55秒前
CC完成签到,获得积分10
59秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3240875
求助须知:如何正确求助?哪些是违规求助? 2885573
关于积分的说明 8239275
捐赠科研通 2554021
什么是DOI,文献DOI怎么找? 1382130
科研通“疑难数据库(出版商)”最低求助积分说明 649471
邀请新用户注册赠送积分活动 625097