次模集函数
次线性函数
单调多边形
计算机科学
后悔
在线算法
最大化
事后诸葛亮
数学优化
凸优化
集合(抽象数据类型)
约束(计算机辅助设计)
凸壳
正多边形
数学
算法
离散数学
机器学习
心理学
认知心理学
程序设计语言
几何学
作者
Junkai Feng,Ruiqi Yang,Hai-Bin Zhang,Zhenning Zhang
标识
DOI:10.1007/978-3-031-22105-7_11
摘要
In an era of data explosion and uncertain information, online optimization becomes a more and more powerful framework. And online DR-submodular maximization is an important subclass because its wide aplications in machine learning, statistics, etc., and significance for exploring general non-convex problems. In this paper, we focus on the online non-monotone DR-submodular maximizaition under general constraint set, and propose a meta-Frank-Wolfe online algorithm with appropriately choosing parameters. Based on the Lyapunov function approach in [8] and variance reduction technique in [16], we show that the proposed online algorithm attains sublinear regret against a 1/4 approximation ratio to the best fixed action in hindsight.
科研通智能强力驱动
Strongly Powered by AbleSci AI