A Deep Reinforcement Learning-Based Decision Support System for Automated Stock Market Trading

强化学习 算法交易 股票交易 库存(枪支) 计算机科学 股票市场 交易策略 金融市场 决策支持系统 另类交易系统 人工智能 运筹学 业务 财务 工程类 机械工程 古生物学 生物
作者
Yasmeen Ansari,Sadaf Yasmin,Sheneela Naz,Hira Zaffar,Zeeshan Ali,Jihoon Moon,Seungmin Rho
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 127469-127501 被引量:18
标识
DOI:10.1109/access.2022.3226629
摘要

Presently, the volatile and dynamic aspects of stock prices are significant research challenges for stock markets or any other financial sector to design accurate and profitable trading strategies in all market situations. To meet such challenges, the usage of computer-aided stock trading techniques has grown in prominence in recent decades owing to their ability to rapidly and accurately analyze stock market situations. In the recent past, deep reinforcement learning (DRL) methods and trading bots are commonly utilized for algorithmic trading. However, in the existing literature, the trading agents employ the historical and present trends of stock prices as an observing state to make trading decisions without taking into account the long-term market future pattern of stock prices. Therefore, in this study, we proposed a novel decision support system for automated stock trading based on deep reinforcement learning that observes both past and future trends of stock prices whether single and multi-step ahead as an observing state to make the optimal trading decisions of buying, selling, and holding the stocks. More specifically, at every time step, future trends are monitored concurrently using a forecasting network whose output is concatenated with past trends of stock prices. The concatenated vectors are subsequently supplied to the DRL agent as an observation state. In addition, the suggested forecasting network is built on a Gated Recurrent Unit (GRU). The GRU-based agent captures more informative and inherent aspects of time-series financial data. Furthermore, the suggested decision support system has been tested on several stock markets such as Tesla, IBM, Amazon, CSCO, and Chinese Stocks as well as equity markets i-e SSE Composite Index, NIFTY 50 Index, US Commodity Index Fund, and has achieved encouraging profit values while trading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可乐666完成签到,获得积分10
1秒前
舆上帝同行完成签到,获得积分10
1秒前
炫炫炫完成签到,获得积分10
1秒前
Jing发布了新的文献求助10
1秒前
2秒前
CodeCraft应助远方的大树采纳,获得10
2秒前
剑来不来完成签到,获得积分10
2秒前
完美世界应助西瓜采纳,获得10
3秒前
3秒前
承欢发布了新的文献求助10
3秒前
桐桐应助李海阳采纳,获得10
3秒前
w2387018429发布了新的文献求助50
4秒前
Tree完成签到 ,获得积分10
4秒前
浩天发布了新的文献求助10
4秒前
zxyxy完成签到 ,获得积分10
5秒前
5秒前
大模型应助xzh采纳,获得10
6秒前
newgeno2003发布了新的文献求助10
6秒前
高兴的斑马完成签到 ,获得积分10
7秒前
7秒前
hxb发布了新的文献求助10
7秒前
CipherSage应助Lixiang采纳,获得10
7秒前
7秒前
8秒前
9秒前
呆熊发布了新的文献求助10
9秒前
9秒前
嫁个养熊猫的完成签到 ,获得积分0
10秒前
lwl666完成签到,获得积分10
10秒前
微笑远航完成签到,获得积分10
10秒前
11秒前
wang完成签到,获得积分10
11秒前
吕邓宏完成签到 ,获得积分10
11秒前
11秒前
猪皮恶人发布了新的文献求助10
12秒前
12秒前
小青椒应助541采纳,获得30
12秒前
12秒前
12秒前
Jing发布了新的文献求助10
13秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
Refractory Castable Engineering 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5205267
求助须知:如何正确求助?哪些是违规求助? 4383971
关于积分的说明 13651793
捐赠科研通 4242117
什么是DOI,文献DOI怎么找? 2327150
邀请新用户注册赠送积分活动 1324954
关于科研通互助平台的介绍 1277165