A Deep Reinforcement Learning-Based Decision Support System for Automated Stock Market Trading

强化学习 算法交易 股票交易 库存(枪支) 计算机科学 股票市场 交易策略 金融市场 决策支持系统 另类交易系统 人工智能 运筹学 业务 财务 工程类 生物 古生物学 机械工程
作者
Yasmeen Ansari,Sadaf Yasmin,Sheneela Naz,Hira Zaffar,Zeeshan Ali,Jihoon Moon,Seungmin Rho
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 127469-127501 被引量:18
标识
DOI:10.1109/access.2022.3226629
摘要

Presently, the volatile and dynamic aspects of stock prices are significant research challenges for stock markets or any other financial sector to design accurate and profitable trading strategies in all market situations. To meet such challenges, the usage of computer-aided stock trading techniques has grown in prominence in recent decades owing to their ability to rapidly and accurately analyze stock market situations. In the recent past, deep reinforcement learning (DRL) methods and trading bots are commonly utilized for algorithmic trading. However, in the existing literature, the trading agents employ the historical and present trends of stock prices as an observing state to make trading decisions without taking into account the long-term market future pattern of stock prices. Therefore, in this study, we proposed a novel decision support system for automated stock trading based on deep reinforcement learning that observes both past and future trends of stock prices whether single and multi-step ahead as an observing state to make the optimal trading decisions of buying, selling, and holding the stocks. More specifically, at every time step, future trends are monitored concurrently using a forecasting network whose output is concatenated with past trends of stock prices. The concatenated vectors are subsequently supplied to the DRL agent as an observation state. In addition, the suggested forecasting network is built on a Gated Recurrent Unit (GRU). The GRU-based agent captures more informative and inherent aspects of time-series financial data. Furthermore, the suggested decision support system has been tested on several stock markets such as Tesla, IBM, Amazon, CSCO, and Chinese Stocks as well as equity markets i-e SSE Composite Index, NIFTY 50 Index, US Commodity Index Fund, and has achieved encouraging profit values while trading.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Aurora完成签到,获得积分10
1秒前
2秒前
叶123完成签到,获得积分10
3秒前
桃子发布了新的文献求助10
3秒前
仲乔妹完成签到,获得积分10
3秒前
jzmulyl完成签到,获得积分10
4秒前
nannan完成签到 ,获得积分10
4秒前
董阳完成签到,获得积分10
5秒前
开心榴莲大王完成签到 ,获得积分10
5秒前
多边形完成签到 ,获得积分10
5秒前
Renee完成签到,获得积分10
6秒前
依依完成签到 ,获得积分10
6秒前
6秒前
自信的冬日完成签到,获得积分10
6秒前
热可可728完成签到,获得积分10
7秒前
迷失自我完成签到,获得积分10
7秒前
lili完成签到 ,获得积分10
7秒前
昏睡的小蚂蚁完成签到 ,获得积分10
7秒前
缥缈的凡梦完成签到 ,获得积分10
9秒前
dashi完成签到 ,获得积分10
10秒前
温暖大米完成签到 ,获得积分10
10秒前
123完成签到 ,获得积分10
10秒前
额123没名完成签到 ,获得积分10
10秒前
儒雅的千秋完成签到,获得积分10
11秒前
拒绝养细胞完成签到,获得积分10
11秒前
ran完成签到 ,获得积分10
11秒前
柳crystal完成签到,获得积分10
13秒前
jzmupyj完成签到,获得积分10
13秒前
zxt完成签到,获得积分10
13秒前
桃子完成签到,获得积分20
14秒前
lilycat完成签到,获得积分10
17秒前
研友_nPxRRn完成签到,获得积分10
20秒前
夏虫完成签到,获得积分10
20秒前
小王同学完成签到 ,获得积分10
21秒前
斯文的慕儿完成签到 ,获得积分10
21秒前
czt完成签到 ,获得积分10
21秒前
正直的煎饼完成签到,获得积分10
22秒前
平凡完成签到,获得积分10
22秒前
坦率的从波完成签到 ,获得积分10
24秒前
能干戒指关注了科研通微信公众号
24秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015670
求助须知:如何正确求助?哪些是违规求助? 3555644
关于积分的说明 11318192
捐赠科研通 3288842
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015