A Deep Reinforcement Learning-Based Decision Support System for Automated Stock Market Trading

强化学习 算法交易 股票交易 库存(枪支) 计算机科学 股票市场 交易策略 金融市场 决策支持系统 另类交易系统 人工智能 运筹学 业务 财务 工程类 生物 古生物学 机械工程
作者
Yasmeen Ansari,Sadaf Yasmin,Sheneela Naz,Hira Zaffar,Zeeshan Ali,Jihoon Moon,Seungmin Rho
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:10: 127469-127501 被引量:18
标识
DOI:10.1109/access.2022.3226629
摘要

Presently, the volatile and dynamic aspects of stock prices are significant research challenges for stock markets or any other financial sector to design accurate and profitable trading strategies in all market situations. To meet such challenges, the usage of computer-aided stock trading techniques has grown in prominence in recent decades owing to their ability to rapidly and accurately analyze stock market situations. In the recent past, deep reinforcement learning (DRL) methods and trading bots are commonly utilized for algorithmic trading. However, in the existing literature, the trading agents employ the historical and present trends of stock prices as an observing state to make trading decisions without taking into account the long-term market future pattern of stock prices. Therefore, in this study, we proposed a novel decision support system for automated stock trading based on deep reinforcement learning that observes both past and future trends of stock prices whether single and multi-step ahead as an observing state to make the optimal trading decisions of buying, selling, and holding the stocks. More specifically, at every time step, future trends are monitored concurrently using a forecasting network whose output is concatenated with past trends of stock prices. The concatenated vectors are subsequently supplied to the DRL agent as an observation state. In addition, the suggested forecasting network is built on a Gated Recurrent Unit (GRU). The GRU-based agent captures more informative and inherent aspects of time-series financial data. Furthermore, the suggested decision support system has been tested on several stock markets such as Tesla, IBM, Amazon, CSCO, and Chinese Stocks as well as equity markets i-e SSE Composite Index, NIFTY 50 Index, US Commodity Index Fund, and has achieved encouraging profit values while trading.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈chq发布了新的文献求助10
1秒前
科研通AI2S应助洁净艳一采纳,获得10
1秒前
2秒前
2秒前
orixero应助1337采纳,获得10
4秒前
yuzheyu发布了新的文献求助10
5秒前
USylvia发布了新的文献求助10
5秒前
7秒前
可爱的函函应助吕大本事采纳,获得10
8秒前
tz发布了新的文献求助10
9秒前
852应助baekyex采纳,获得10
10秒前
外向的不尤完成签到,获得积分20
10秒前
别介发布了新的文献求助30
11秒前
12秒前
狮子发布了新的文献求助10
13秒前
14秒前
科研通AI2S应助大方向真采纳,获得10
14秒前
HCLonely应助韩小小采纳,获得10
14秒前
萧水白应助xx采纳,获得10
18秒前
dai完成签到,获得积分20
21秒前
21秒前
22秒前
AireenBeryl531应助洁净艳一采纳,获得10
23秒前
ttt完成签到,获得积分10
24秒前
别介完成签到,获得积分10
24秒前
dai发布了新的文献求助10
25秒前
26秒前
27秒前
jhgg8009应助Manka采纳,获得30
27秒前
等待丹秋完成签到,获得积分10
28秒前
科研通AI2S应助zy采纳,获得10
30秒前
30秒前
科研通AI2S应助wanna采纳,获得10
32秒前
1337发布了新的文献求助10
32秒前
mingjie完成签到,获得积分10
33秒前
34秒前
36秒前
chixueqi完成签到,获得积分10
36秒前
潘健康发布了新的文献求助10
37秒前
狮子完成签到,获得积分10
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238520
求助须知:如何正确求助?哪些是违规求助? 2883916
关于积分的说明 8231931
捐赠科研通 2551852
什么是DOI,文献DOI怎么找? 1380294
科研通“疑难数据库(出版商)”最低求助积分说明 649001
邀请新用户注册赠送积分活动 624678