清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

TCCFusion: An infrared and visible image fusion method based on transformer and cross correlation

计算机科学 人工智能 模式识别(心理学) 特征提取 卷积神经网络 计算机视觉
作者
Wei Tang,Fazhi He,Yü Liu
出处
期刊:Pattern Recognition [Elsevier]
卷期号:137: 109295-109295 被引量:75
标识
DOI:10.1016/j.patcog.2022.109295
摘要

Infrared and visible image fusion aims to obtain a synthetic image that can simultaneously exhibit salient objects and provide abundant texture details. However, existing deep learning-based methods generally depend on convolutional operations, which indeed have good local feature extraction ability, but the restricted receptive field limits its capability in modeling long-range dependencies. To conquer this dilemma, we propose an infrared and visible image fusion method based on Transformer and cross correlation, named TCCFusion. Specifically, we design a local feature extraction branch (LFEB) to preserve local complementary information, in which a dense-shape network is introduced to reuse the information that may be lost during the convolutional operation. To avoid the limitation of the receptive field and to fully extract the global significant information, a global feature extraction branch (GFEB) is devised that consists of three Transformer blocks for long-range relationship construction. In addition, LFEB and GFEB are arranged in a parallel fashion to maintain local and global useful information in a more effective way. Furthermore, we design a cross correlation loss to train the proposed fusion model in an unsupervised manner, with which the fusion result can obtain adequate thermal radiation information in an infrared image and ample texture details in a visible image. Massive experiments on two mainstream datasets illustrate that our TCCFusion outperforms state-of-the-art algorithms not only on visual quality but also on quantitative assessments. Ablation experiments on the network framework and objective function demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
41秒前
曾经问雁完成签到,获得积分10
42秒前
47秒前
曾经问雁发布了新的文献求助10
49秒前
54秒前
58秒前
陈尹蓝完成签到 ,获得积分10
1分钟前
1分钟前
乐乐应助Marshall采纳,获得10
1分钟前
2分钟前
Marshall发布了新的文献求助10
2分钟前
锦鲤完成签到,获得积分10
2分钟前
科研通AI6.1应助twk采纳,获得10
2分钟前
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
NattyPoe应助科研通管家采纳,获得10
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
田様应助科研通管家采纳,获得10
2分钟前
3分钟前
3分钟前
卓天宇完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助50
3分钟前
3分钟前
小李老博完成签到,获得积分10
4分钟前
在水一方应助科研通管家采纳,获得10
4分钟前
NattyPoe应助科研通管家采纳,获得10
4分钟前
4分钟前
两个榴莲完成签到,获得积分0
5分钟前
5分钟前
魏猛完成签到,获得积分10
6分钟前
ilihe应助dd采纳,获得10
6分钟前
简单发布了新的文献求助20
6分钟前
dd完成签到,获得积分10
7分钟前
简单发布了新的文献求助20
7分钟前
开心每一天完成签到 ,获得积分10
7分钟前
无极微光应助简单采纳,获得20
8分钟前
8分钟前
Mio发布了新的文献求助10
8分钟前
顾矜应助科研通管家采纳,获得10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788848
求助须知:如何正确求助?哪些是违规求助? 5712796
关于积分的说明 15473966
捐赠科研通 4916884
什么是DOI,文献DOI怎么找? 2646597
邀请新用户注册赠送积分活动 1594281
关于科研通互助平台的介绍 1548701