TCCFusion: An infrared and visible image fusion method based on transformer and cross correlation

计算机科学 人工智能 模式识别(心理学) 特征提取 卷积神经网络 计算机视觉
作者
Wei Tang,Fazhi He,Yü Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:137: 109295-109295 被引量:62
标识
DOI:10.1016/j.patcog.2022.109295
摘要

Infrared and visible image fusion aims to obtain a synthetic image that can simultaneously exhibit salient objects and provide abundant texture details. However, existing deep learning-based methods generally depend on convolutional operations, which indeed have good local feature extraction ability, but the restricted receptive field limits its capability in modeling long-range dependencies. To conquer this dilemma, we propose an infrared and visible image fusion method based on Transformer and cross correlation, named TCCFusion. Specifically, we design a local feature extraction branch (LFEB) to preserve local complementary information, in which a dense-shape network is introduced to reuse the information that may be lost during the convolutional operation. To avoid the limitation of the receptive field and to fully extract the global significant information, a global feature extraction branch (GFEB) is devised that consists of three Transformer blocks for long-range relationship construction. In addition, LFEB and GFEB are arranged in a parallel fashion to maintain local and global useful information in a more effective way. Furthermore, we design a cross correlation loss to train the proposed fusion model in an unsupervised manner, with which the fusion result can obtain adequate thermal radiation information in an infrared image and ample texture details in a visible image. Massive experiments on two mainstream datasets illustrate that our TCCFusion outperforms state-of-the-art algorithms not only on visual quality but also on quantitative assessments. Ablation experiments on the network framework and objective function demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
用户123完成签到,获得积分10
2秒前
pluto应助谦让的冷珍采纳,获得10
2秒前
九思完成签到,获得积分10
3秒前
4秒前
orixero应助轻松的万恶采纳,获得10
6秒前
6秒前
7秒前
8秒前
8秒前
boluohu发布了新的文献求助10
9秒前
10秒前
小白完成签到 ,获得积分10
11秒前
FashionBoy应助QIANGYI采纳,获得10
12秒前
岑甜甜发布了新的文献求助10
13秒前
刘一鸣发布了新的文献求助10
13秒前
wz发布了新的文献求助10
14秒前
14秒前
1eader1完成签到,获得积分10
15秒前
peekaboo完成签到,获得积分10
15秒前
July完成签到,获得积分10
16秒前
汉堡包应助是龙龙呀采纳,获得10
17秒前
17秒前
脑洞疼应助苏大肺雾采纳,获得10
17秒前
18秒前
18秒前
20秒前
20秒前
lllllll完成签到,获得积分10
21秒前
勾勾1991发布了新的文献求助10
22秒前
夜见枫发布了新的文献求助10
22秒前
23秒前
23秒前
24秒前
逃亡的小狗完成签到,获得积分10
24秒前
苏大肺雾完成签到,获得积分10
24秒前
锅子发布了新的文献求助10
26秒前
善学以致用应助wz采纳,获得30
27秒前
听白完成签到,获得积分10
27秒前
wanci应助忆夕采纳,获得30
27秒前
28秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993