TCCFusion: An infrared and visible image fusion method based on transformer and cross correlation

计算机科学 人工智能 模式识别(心理学) 特征提取 卷积神经网络 计算机视觉
作者
Wei Tang,Fazhi He,Yü Liu
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:137: 109295-109295 被引量:75
标识
DOI:10.1016/j.patcog.2022.109295
摘要

Infrared and visible image fusion aims to obtain a synthetic image that can simultaneously exhibit salient objects and provide abundant texture details. However, existing deep learning-based methods generally depend on convolutional operations, which indeed have good local feature extraction ability, but the restricted receptive field limits its capability in modeling long-range dependencies. To conquer this dilemma, we propose an infrared and visible image fusion method based on Transformer and cross correlation, named TCCFusion. Specifically, we design a local feature extraction branch (LFEB) to preserve local complementary information, in which a dense-shape network is introduced to reuse the information that may be lost during the convolutional operation. To avoid the limitation of the receptive field and to fully extract the global significant information, a global feature extraction branch (GFEB) is devised that consists of three Transformer blocks for long-range relationship construction. In addition, LFEB and GFEB are arranged in a parallel fashion to maintain local and global useful information in a more effective way. Furthermore, we design a cross correlation loss to train the proposed fusion model in an unsupervised manner, with which the fusion result can obtain adequate thermal radiation information in an infrared image and ample texture details in a visible image. Massive experiments on two mainstream datasets illustrate that our TCCFusion outperforms state-of-the-art algorithms not only on visual quality but also on quantitative assessments. Ablation experiments on the network framework and objective function demonstrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
仪飞冲天小女警完成签到,获得积分10
2秒前
列苑苑发布了新的文献求助10
2秒前
2秒前
2秒前
小K发布了新的文献求助10
3秒前
明理寄容发布了新的文献求助10
5秒前
淼淼完成签到,获得积分10
5秒前
xxh完成签到,获得积分10
6秒前
7秒前
风清扬发布了新的文献求助10
7秒前
灿星发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
CipherSage应助祁郁郁采纳,获得10
10秒前
10秒前
10秒前
ww发布了新的文献求助10
11秒前
英姑应助靓丽雁风采纳,获得10
12秒前
WNL发布了新的文献求助10
12秒前
hellokk发布了新的文献求助10
12秒前
张泽林完成签到,获得积分10
12秒前
Zzzjjj123发布了新的文献求助10
13秒前
dd发布了新的文献求助10
14秒前
15秒前
LIAN发布了新的文献求助10
15秒前
月蚀六花发布了新的文献求助10
16秒前
友好的天奇完成签到,获得积分10
16秒前
可爱的函函应助ww采纳,获得10
16秒前
ziwei发布了新的文献求助10
17秒前
丫丫完成签到 ,获得积分10
20秒前
renshiq完成签到,获得积分10
22秒前
刘尚韬完成签到,获得积分10
22秒前
愉快谷芹完成签到 ,获得积分10
23秒前
传奇3应助月蚀六花采纳,获得10
26秒前
irisy发布了新的文献求助20
26秒前
28秒前
4444完成签到,获得积分10
29秒前
华仔应助美美桑内采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5061433
求助须知:如何正确求助?哪些是违规求助? 4285459
关于积分的说明 13354590
捐赠科研通 4103331
什么是DOI,文献DOI怎么找? 2246615
邀请新用户注册赠送积分活动 1252277
关于科研通互助平台的介绍 1183203