Data-driven discovery of intrinsic dynamics

计算机科学 动力学(音乐) 物理 声学
作者
Daniel Floryan,Michael D. Graham
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (12): 1113-1120 被引量:85
标识
DOI:10.1038/s42256-022-00575-4
摘要

Dynamical models underpin our ability to understand and predict the behaviour of natural systems. Whether dynamical models are developed from first-principles derivations or from observational data, they are predicated on our choice of state variables. The choice of state variables is driven by convenience and intuition, and, in data-driven cases, the observed variables are often chosen to be the state variables. The dimensionality of these variables (and consequently the dynamical models) can be arbitrarily large, obscuring the underlying behaviour of the system. In truth these variables are often highly redundant and the system is driven by a much smaller set of latent intrinsic variables. In this study we combine the mathematical theory of manifolds with the representational capacity of neural networks to develop a method that learns a system’s intrinsic state variables directly from time-series data, as well as predictive models for their dynamics. What distinguishes our method is its ability to reduce data to the intrinsic dimensionality of the nonlinear manifold they live on. This ability is enabled by the concepts of charts and atlases from the theory of manifolds, whereby a manifold is represented by a collection of patches that are sewn together—a necessary representation to attain intrinsic dimensionality. We demonstrate this approach on several high-dimensional systems with low-dimensional behaviour. The resulting framework provides the ability to develop dynamical models of the lowest possible dimension, capturing the essence of a system. Learning minimal representations of dynamical systems is essential for mathematical modelling and prediction in science and engineering. Floryan and Graham propose a deep learning framework able to estimate accurate global dynamical models by sewing together multiple local representations learnt from high-dimensional time-series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiangqing完成签到 ,获得积分10
刚刚
陈惠卿88完成签到,获得积分10
刚刚
天天快乐应助零度火采纳,获得10
1秒前
1秒前
1秒前
ru发布了新的文献求助10
1秒前
华仔应助mm采纳,获得10
2秒前
2秒前
偷书贼完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
胖呆呆完成签到,获得积分20
4秒前
as完成签到,获得积分10
4秒前
4秒前
奕火完成签到,获得积分10
4秒前
bjy完成签到,获得积分10
4秒前
4秒前
Hello应助友好的晓亦采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
5秒前
科研通AI6应助ardejiang采纳,获得10
5秒前
6秒前
无极微光应助123采纳,获得20
6秒前
6秒前
6秒前
ke发布了新的文献求助10
7秒前
JING完成签到,获得积分10
8秒前
hhhhyyy完成签到,获得积分20
8秒前
hope完成签到,获得积分20
8秒前
汉堡包应助123采纳,获得10
9秒前
9秒前
UniK发布了新的文献求助10
9秒前
飘逸宛筠完成签到,获得积分10
10秒前
huangyao发布了新的文献求助10
10秒前
zzioo完成签到,获得积分10
10秒前
Stella关注了科研通微信公众号
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531594
求助须知:如何正确求助?哪些是违规求助? 4620404
关于积分的说明 14573182
捐赠科研通 4560142
什么是DOI,文献DOI怎么找? 2498713
邀请新用户注册赠送积分活动 1478629
关于科研通互助平台的介绍 1449993