Data-driven discovery of intrinsic dynamics

计算机科学 动力学(音乐) 物理 声学
作者
Daniel Floryan,Michael D. Graham
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (12): 1113-1120 被引量:49
标识
DOI:10.1038/s42256-022-00575-4
摘要

Dynamical models underpin our ability to understand and predict the behaviour of natural systems. Whether dynamical models are developed from first-principles derivations or from observational data, they are predicated on our choice of state variables. The choice of state variables is driven by convenience and intuition, and, in data-driven cases, the observed variables are often chosen to be the state variables. The dimensionality of these variables (and consequently the dynamical models) can be arbitrarily large, obscuring the underlying behaviour of the system. In truth these variables are often highly redundant and the system is driven by a much smaller set of latent intrinsic variables. In this study we combine the mathematical theory of manifolds with the representational capacity of neural networks to develop a method that learns a system’s intrinsic state variables directly from time-series data, as well as predictive models for their dynamics. What distinguishes our method is its ability to reduce data to the intrinsic dimensionality of the nonlinear manifold they live on. This ability is enabled by the concepts of charts and atlases from the theory of manifolds, whereby a manifold is represented by a collection of patches that are sewn together—a necessary representation to attain intrinsic dimensionality. We demonstrate this approach on several high-dimensional systems with low-dimensional behaviour. The resulting framework provides the ability to develop dynamical models of the lowest possible dimension, capturing the essence of a system. Learning minimal representations of dynamical systems is essential for mathematical modelling and prediction in science and engineering. Floryan and Graham propose a deep learning framework able to estimate accurate global dynamical models by sewing together multiple local representations learnt from high-dimensional time-series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
尼古拉耶维奇完成签到,获得积分10
1秒前
Nium完成签到,获得积分10
2秒前
青水完成签到 ,获得积分10
6秒前
王木木发布了新的文献求助10
17秒前
anan应助如果有风来采纳,获得10
18秒前
土豆晴完成签到 ,获得积分10
19秒前
long完成签到,获得积分0
19秒前
ly普鲁卡因完成签到,获得积分10
20秒前
Yy完成签到 ,获得积分10
20秒前
也是难得取个名完成签到 ,获得积分10
23秒前
温文尔雅完成签到,获得积分10
24秒前
Qvby3完成签到 ,获得积分10
29秒前
量子星尘发布了新的文献求助10
32秒前
乐乐应助coven采纳,获得30
32秒前
温柔觅松完成签到 ,获得积分10
32秒前
冷静如松完成签到 ,获得积分10
33秒前
勤奋完成签到,获得积分0
44秒前
leng完成签到 ,获得积分10
44秒前
如果有风来完成签到,获得积分10
48秒前
高文强完成签到 ,获得积分10
48秒前
明天过后完成签到,获得积分10
50秒前
yinshan完成签到 ,获得积分10
50秒前
爱科研的小虞完成签到 ,获得积分10
51秒前
Hudson完成签到,获得积分10
52秒前
大大大大宝凌完成签到,获得积分10
1分钟前
bohn123完成签到 ,获得积分10
1分钟前
C_Li完成签到,获得积分10
1分钟前
小白果果完成签到,获得积分10
1分钟前
人文完成签到 ,获得积分10
1分钟前
LXZ完成签到,获得积分10
1分钟前
上官完成签到 ,获得积分10
1分钟前
Cai完成签到,获得积分10
1分钟前
zdy完成签到,获得积分10
1分钟前
乔砖家应助CL837809486采纳,获得10
1分钟前
1分钟前
1分钟前
陈_Ccc完成签到 ,获得积分10
1分钟前
1分钟前
南风知我意完成签到,获得积分10
1分钟前
DXDXJX完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015603
求助须知:如何正确求助?哪些是违规求助? 3555597
关于积分的说明 11318138
捐赠科研通 3288782
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015