Data-driven discovery of intrinsic dynamics

计算机科学 动力学(音乐) 物理 声学
作者
Daniel Floryan,Michael D. Graham
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (12): 1113-1120 被引量:49
标识
DOI:10.1038/s42256-022-00575-4
摘要

Dynamical models underpin our ability to understand and predict the behaviour of natural systems. Whether dynamical models are developed from first-principles derivations or from observational data, they are predicated on our choice of state variables. The choice of state variables is driven by convenience and intuition, and, in data-driven cases, the observed variables are often chosen to be the state variables. The dimensionality of these variables (and consequently the dynamical models) can be arbitrarily large, obscuring the underlying behaviour of the system. In truth these variables are often highly redundant and the system is driven by a much smaller set of latent intrinsic variables. In this study we combine the mathematical theory of manifolds with the representational capacity of neural networks to develop a method that learns a system’s intrinsic state variables directly from time-series data, as well as predictive models for their dynamics. What distinguishes our method is its ability to reduce data to the intrinsic dimensionality of the nonlinear manifold they live on. This ability is enabled by the concepts of charts and atlases from the theory of manifolds, whereby a manifold is represented by a collection of patches that are sewn together—a necessary representation to attain intrinsic dimensionality. We demonstrate this approach on several high-dimensional systems with low-dimensional behaviour. The resulting framework provides the ability to develop dynamical models of the lowest possible dimension, capturing the essence of a system. Learning minimal representations of dynamical systems is essential for mathematical modelling and prediction in science and engineering. Floryan and Graham propose a deep learning framework able to estimate accurate global dynamical models by sewing together multiple local representations learnt from high-dimensional time-series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shenzhou9发布了新的文献求助10
1秒前
2秒前
十三完成签到,获得积分10
3秒前
CiCi应助雨落瑾年采纳,获得10
3秒前
light完成签到 ,获得积分10
3秒前
大模型应助聆听采纳,获得10
3秒前
sff完成签到,获得积分10
5秒前
guojingjing发布了新的文献求助10
5秒前
5秒前
又见三皮完成签到,获得积分10
7秒前
一行白鹭上青天完成签到 ,获得积分10
7秒前
zzz完成签到,获得积分10
7秒前
shenzhou9完成签到,获得积分10
7秒前
灰色与青完成签到,获得积分10
10秒前
zhuww完成签到,获得积分10
10秒前
Answer完成签到,获得积分10
11秒前
Akim应助苦酷采纳,获得10
11秒前
zvk完成签到,获得积分10
11秒前
十六完成签到,获得积分10
12秒前
12秒前
直率一刀发布了新的文献求助30
12秒前
zho应助科研如喝水采纳,获得10
13秒前
岚12完成签到 ,获得积分10
14秒前
镜哥完成签到,获得积分10
14秒前
机智幻嫣应助19111867526采纳,获得10
14秒前
sssss应助keyan123采纳,获得10
16秒前
Eason完成签到 ,获得积分10
16秒前
NIHAO213发布了新的文献求助10
18秒前
嘒彼小星完成签到 ,获得积分10
19秒前
1234567xjy完成签到,获得积分10
20秒前
难过大白完成签到 ,获得积分10
21秒前
24秒前
27秒前
Milton_z完成签到 ,获得积分10
27秒前
雨落瑾年完成签到,获得积分10
30秒前
酷波er应助yiyimx采纳,获得10
30秒前
31秒前
31秒前
苦酷发布了新的文献求助10
32秒前
tzjz_zrz完成签到,获得积分10
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671625
求助须知:如何正确求助?哪些是违规求助? 3228325
关于积分的说明 9779625
捐赠科研通 2938636
什么是DOI,文献DOI怎么找? 1610180
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093