Data-driven discovery of intrinsic dynamics

计算机科学 动力学(音乐) 物理 声学
作者
Daniel Floryan,Michael D. Graham
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (12): 1113-1120 被引量:49
标识
DOI:10.1038/s42256-022-00575-4
摘要

Dynamical models underpin our ability to understand and predict the behaviour of natural systems. Whether dynamical models are developed from first-principles derivations or from observational data, they are predicated on our choice of state variables. The choice of state variables is driven by convenience and intuition, and, in data-driven cases, the observed variables are often chosen to be the state variables. The dimensionality of these variables (and consequently the dynamical models) can be arbitrarily large, obscuring the underlying behaviour of the system. In truth these variables are often highly redundant and the system is driven by a much smaller set of latent intrinsic variables. In this study we combine the mathematical theory of manifolds with the representational capacity of neural networks to develop a method that learns a system’s intrinsic state variables directly from time-series data, as well as predictive models for their dynamics. What distinguishes our method is its ability to reduce data to the intrinsic dimensionality of the nonlinear manifold they live on. This ability is enabled by the concepts of charts and atlases from the theory of manifolds, whereby a manifold is represented by a collection of patches that are sewn together—a necessary representation to attain intrinsic dimensionality. We demonstrate this approach on several high-dimensional systems with low-dimensional behaviour. The resulting framework provides the ability to develop dynamical models of the lowest possible dimension, capturing the essence of a system. Learning minimal representations of dynamical systems is essential for mathematical modelling and prediction in science and engineering. Floryan and Graham propose a deep learning framework able to estimate accurate global dynamical models by sewing together multiple local representations learnt from high-dimensional time-series data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123完成签到,获得积分10
刚刚
慕青应助he采纳,获得10
1秒前
1秒前
彭佳丽完成签到,获得积分10
2秒前
Lucas应助11111采纳,获得10
2秒前
星辰大海应助斯人若彩虹i采纳,获得30
3秒前
4秒前
yuebaoji发布了新的文献求助10
5秒前
森ok发布了新的文献求助10
6秒前
水沝完成签到 ,获得积分10
6秒前
8秒前
vermouth完成签到,获得积分10
10秒前
毛豆应助科研通管家采纳,获得10
11秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
毛豆应助科研通管家采纳,获得10
11秒前
cocolu应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
iNk应助科研通管家采纳,获得20
11秒前
毛豆应助科研通管家采纳,获得10
11秒前
Qiao应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
险胜应助科研通管家采纳,获得10
11秒前
Leif应助科研通管家采纳,获得10
11秒前
11秒前
12秒前
QDU应助科研通管家采纳,获得10
12秒前
cocolu应助科研通管家采纳,获得10
12秒前
情怀应助科研通管家采纳,获得10
12秒前
我是老大应助科研通管家采纳,获得50
12秒前
iNk应助科研通管家采纳,获得20
12秒前
良辰应助小小怪兽采纳,获得10
12秒前
善学以致用应助trap采纳,获得10
13秒前
jianning发布了新的文献求助10
13秒前
syalonyui发布了新的文献求助10
17秒前
20秒前
21秒前
axiao完成签到,获得积分10
22秒前
坦率芝麻应助Baekkk采纳,获得10
23秒前
李健应助hwq采纳,获得10
23秒前
青提味的小熊维尼完成签到,获得积分20
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307009
求助须知:如何正确求助?哪些是违规求助? 2940878
关于积分的说明 8498950
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663478
邀请新用户注册赠送积分活动 648318