Mfgnn: Multi‐Scale Feature‐Attentive Graph Neural Networks for Molecular Property Prediction

计算机科学 分子图 人工智能 图形 特征(语言学) 深度学习 财产(哲学) 人工神经网络 机器学习 特征学习 理论计算机科学 语言学 哲学 认识论
作者
Wanghao Ye,Jingcheng Li,Xianfa Cai
出处
期刊:Journal of Computational Chemistry [Wiley]
卷期号:46 (3)
标识
DOI:10.1002/jcc.70011
摘要

ABSTRACT In the realm of artificial intelligence‐driven drug discovery (AIDD), accurately predicting the influence of molecular structures on their properties is a critical research focus. While deep learning models based on graph neural networks (GNNs) have made significant advancements in this area, prior studies have primarily concentrated on molecule‐level representations, often neglecting the impact of functional group structures and the potential relationships between fragments on molecular property predictions. To address this gap, we introduce the multi‐scale feature attention graph neural network (MfGNN), which enhances traditional atom‐based molecular graph representations by incorporating fragment‐level representations derived from chemically synthesizable BRICS fragments. MfGNN not only effectively captures both the structural information of molecules and the features of functional groups but also pays special attention to the potential relationships between fragments, exploring how they collectively influence molecular properties. This model integrates two core mechanisms: a graph attention mechanism that captures embeddings of molecules and functional groups, and a feature extraction module that systematically processes BRICS fragment‐level features to uncover relationships among the fragments. Our comprehensive experiments demonstrate that MfGNN outperforms leading machine learning and deep learning models, achieving state‐of‐the‐art performance in 8 out of 11 learning tasks across various domains, including physical chemistry, biophysics, physiology, and toxicology. Furthermore, ablation studies reveal that the integration of multi‐scale feature information and the feature extraction module enhances the richness of molecular features, thereby improving the model's predictive capabilities.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小北发布了新的文献求助10
2秒前
3秒前
完美世界应助务实锦程采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
8秒前
研友_VZG7GZ应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
无名老大应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
hwzhou10发布了新的文献求助10
10秒前
13秒前
852应助xiaolang2004采纳,获得10
14秒前
稳定上分完成签到,获得积分10
15秒前
李月月完成签到 ,获得积分10
21秒前
24秒前
wangwang完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
gmjinfeng完成签到,获得积分0
26秒前
JWJ发布了新的文献求助10
28秒前
28秒前
一杯热美式完成签到,获得积分10
31秒前
Sylvia_J完成签到 ,获得积分10
31秒前
我是老大应助纸鹤采纳,获得10
31秒前
兔兔发布了新的文献求助10
33秒前
34秒前
Ihang发布了新的文献求助50
38秒前
39秒前
漂泊2025完成签到,获得积分10
40秒前
dddd应助加油努力采纳,获得10
40秒前
41秒前
43秒前
乐乐应助土星采纳,获得10
44秒前
老姚发布了新的文献求助10
44秒前
mouxq发布了新的文献求助10
45秒前
纸鹤发布了新的文献求助10
46秒前
DJ发布了新的文献求助10
46秒前
lucky完成签到 ,获得积分10
52秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Academic Capitalism and the New Economy: Markets, State, and Higher Education 500
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3375759
求助须知:如何正确求助?哪些是违规求助? 2992181
关于积分的说明 8749514
捐赠科研通 2676442
什么是DOI,文献DOI怎么找? 1466121
科研通“疑难数据库(出版商)”最低求助积分说明 678102
邀请新用户注册赠送积分活动 669773