VMC‐UNet: A Vision Mamba‐CNN U‐Net for Tumor Segmentation in Breast Ultrasound Image

计算机科学
作者
Dongyue Wang,Weiyu Zhao,Kangping Cui,Yi Zhu
出处
期刊:International Journal of Imaging Systems and Technology [Wiley]
卷期号:34 (6)
标识
DOI:10.1002/ima.23222
摘要

ABSTRACT Breast cancer remains one of the most significant health threats to women, making precise segmentation of target tumors critical for early clinical intervention and postoperative monitoring. While numerous convolutional neural networks (CNNs) and vision transformers have been developed to segment breast tumors from ultrasound images, both architectures encounter difficulties in effectively modeling long‐range dependencies, which are essential for accurate segmentation. Drawing inspiration from the Mamba architecture, we introduce the Vision Mamba‐CNN U‐Net (VMC‐UNet) for breast tumor segmentation. This innovative hybrid framework merges the long‐range dependency modeling capabilities of Mamba with the detailed local representation power of CNNs. A key feature of our approach is the implementation of a residual connection method within the U‐Net architecture, utilizing the visual state space (VSS) module to extract long‐range dependency features from convolutional feature maps effectively. Additionally, to better integrate texture and structural features, we have designed a bilinear multi‐scale attention module (BMSA), which significantly enhances the network's ability to capture and utilize intricate feature details across multiple scales. Extensive experiments conducted on three public datasets demonstrate that the proposed VMC‐UNet surpasses other state‐of‐the‐art methods in breast tumor segmentation, achieving Dice coefficients of 81.52% for BUSI, 88.00% for BUS, and 88.96% for STU. The source code is accessible at https://github.com/windywindyw/VMC‐UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啦啦啦发布了新的文献求助10
1秒前
HSD小龙人完成签到,获得积分10
1秒前
PPSlu完成签到,获得积分10
2秒前
2秒前
lian完成签到,获得积分10
4秒前
似是而非发布了新的文献求助20
8秒前
9秒前
cocolu应助人间烟火采纳,获得10
9秒前
在水一方应助光之战士采纳,获得10
9秒前
11秒前
所所应助ff采纳,获得10
11秒前
熹任发布了新的文献求助30
11秒前
854fycchjh完成签到,获得积分10
12秒前
cara应助浅学者采纳,获得10
12秒前
科目三应助ggb采纳,获得10
12秒前
13秒前
PengSchnee完成签到,获得积分10
15秒前
15秒前
JUNJUN完成签到,获得积分10
18秒前
小小发布了新的文献求助10
18秒前
19秒前
19秒前
ccccchen完成签到,获得积分10
19秒前
情怀应助你好采纳,获得10
20秒前
Deila完成签到 ,获得积分0
20秒前
小蘑菇应助LCY采纳,获得10
21秒前
22秒前
cat_head发布了新的文献求助10
28秒前
28秒前
29秒前
29秒前
SciGPT应助小小采纳,获得20
30秒前
张张完成签到,获得积分10
31秒前
32秒前
33秒前
Jy发布了新的文献求助10
34秒前
愉快的真应助cui采纳,获得30
34秒前
小蘑菇应助科研养猫猫采纳,获得10
37秒前
sdfwsdfsd完成签到,获得积分10
37秒前
cat_head完成签到,获得积分10
37秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3264351
求助须知:如何正确求助?哪些是违规求助? 2904456
关于积分的说明 8330298
捐赠科研通 2574681
什么是DOI,文献DOI怎么找? 1399322
科研通“疑难数据库(出版商)”最低求助积分说明 654476
邀请新用户注册赠送积分活动 633167