亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dynamically Reconstructed Fe‐CoOOH Semi‐Crystalline Electrocatalyst for Efficient Oxygen Evolution Reaction

电催化剂 析氧 电化学 材料科学 催化作用 化学工程 吸附 原电池 曲面重建 纳米技术 化学 电极 物理化学 曲面(拓扑) 冶金 有机化学 工程类 几何学 数学
作者
Abdul Qayum,Karim Harrath,Rui Li,Abebe Reda Woldu,Paul K. Chu,Liangsheng Hu,Fushen Lu,Xiangdong Yao
出处
期刊:Small [Wiley]
被引量:1
标识
DOI:10.1002/smll.202408854
摘要

Abstract The development of robust and efficient electrocatalysts for the oxygen evolution reaction (OER) has been the main focus of water electrolysis but remains a great challenge. Here, the synthesis of a highly active and ultra‐stable Fe‐CoOOH electrocatalyst is reported by steering raw cobalt foam via an in situ solution combustion method assisted by a galvanic replacement reaction and subsequent electrochemical reconstruction of the CoFeO x pre‐catalyst. In/ ex situ electrochemical analysis and physicochemical characterizations show that the CoFeO x undergoes quick chemical and slow morphological reconstruction to Fe‐CoOOH nanosheets. The Fe‐CoOOH possesses a semi‐crystalline nature with distinct short‐range ordering and outstanding OER activity with overpotentials as low as 271 and 291 mV at current densities of 500 and 1,000 mA cm −2 , respectively. The remarkable stability under 1,000 mA cm −2 for at least 700 h is achieved. Theoretical calculations confirm the crucial role of Fe doping in facilitating surface reconstruction, enhancing OER activity, and improving the stability of the Fe‐CoOOH. Comparative analysis with other transition metals doping reveals the unique ability of Fe to adsorb onto the CoOOH surface, thereby modulating the electronic density and facilitating faster adsorption of reaction intermediates. This work represents valuable insights into the surface reconstruction and doping processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助lxy采纳,获得10
2秒前
huahua发布了新的文献求助10
4秒前
诚心靳完成签到 ,获得积分10
7秒前
13秒前
我是老大应助huahua采纳,获得10
14秒前
ceeray23发布了新的文献求助20
19秒前
CipherSage应助chen采纳,获得10
20秒前
ceci完成签到,获得积分10
22秒前
Lucas应助慢慢采纳,获得10
23秒前
传奇3应助Chuang采纳,获得10
27秒前
31秒前
strong完成签到,获得积分10
36秒前
饼子发布了新的文献求助10
37秒前
46秒前
竹筏过海完成签到,获得积分0
46秒前
慢慢发布了新的文献求助10
51秒前
饼子完成签到,获得积分10
51秒前
51秒前
数值分析完成签到 ,获得积分10
53秒前
wu发布了新的文献求助10
55秒前
1分钟前
完美世界应助wu采纳,获得10
1分钟前
SciGPT应助jiajia采纳,获得10
1分钟前
lxy发布了新的文献求助10
1分钟前
So完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
钱来完成签到,获得积分10
1分钟前
wu完成签到,获得积分10
1分钟前
田様应助张力采纳,获得10
1分钟前
北风完成签到 ,获得积分10
1分钟前
星辰大海应助lxy采纳,获得10
1分钟前
yiyixt完成签到 ,获得积分10
1分钟前
七草肃完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686666
求助须知:如何正确求助?哪些是违规求助? 3236990
关于积分的说明 9829160
捐赠科研通 2948946
什么是DOI,文献DOI怎么找? 1617093
邀请新用户注册赠送积分活动 764110
科研通“疑难数据库(出版商)”最低求助积分说明 738322