A novel angle sensitive rotary magnetorheological damper

阻尼器 磁流变液 控制理论(社会学) 磁流变阻尼器 活塞(光学) 阻尼转矩 工程类 还原(数学) 振动 控制系统 结构工程 物理 计算机科学 声学 电压 光学 直接转矩控制 感应电动机 电气工程 人工智能 波前 数学 控制(管理) 几何学
作者
Jun Xi,Yingjian Wang,Meng Xin Wang,X L Ding,Jinjie Wang,Peixin Gao,Tao Yu
出处
期刊:Smart Materials and Structures [IOP Publishing]
标识
DOI:10.1088/1361-665x/ada21a
摘要

Abstract Traditional shear type rotary magnetorheological (MR) dampers have a constant working gap in the activation zone, and the damping force output is only controlled by the excitation current. By combining with closed-loop control algorithms and devices, variable damping force output can be achieved. However, this closed-loop control system is complex and requires additional control equipment. If the control system fails, it is impossible to achieve the output of damping force changes, which is unacceptable in some extremely high reliability, low-cost, and narrow space working conditions. In order to achieve variable damping force output of the rotary MR damper throughout the full piston stroke under constant excitation current, a novel variable positional damping rotary MR damper (VPD-RMRD) is proposed in this study. By presetting the size of the activation gap between the piston and cylinder at different angular positions, it is possible to achieve damping force variation output throughout the entire piston stroke without the need for additional control devices. This variable damping output method only requires a constant excitation current. The prototype of VPD-RMRD has been manufactured and subjected to performance testing. In order to verify the feasibility of applying VPD-RMRD to vibration reduction, this study applied it to the seat suspension system. The experimental results show that the maximum reduction in acceleration transmission rate is more than 20%. The proposal of VPD-RMRD provides a new solution for vibration reduction in narrow spaces, high reliability, and low-cost operating conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lxl666发布了新的文献求助10
1秒前
san发布了新的文献求助10
1秒前
sdnihbhew发布了新的文献求助10
2秒前
2秒前
星河zp完成签到,获得积分10
2秒前
asaki发布了新的文献求助30
5秒前
6秒前
7秒前
7秒前
天天快乐应助言叶采纳,获得10
8秒前
9秒前
9秒前
667788完成签到,获得积分10
9秒前
10秒前
16秒前
17秒前
橙子完成签到 ,获得积分10
17秒前
19秒前
言叶发布了新的文献求助10
20秒前
上官若男应助sun采纳,获得10
22秒前
Biggoose发布了新的文献求助10
22秒前
22秒前
25秒前
wanci应助123Y采纳,获得10
25秒前
陈文宇完成签到,获得积分10
26秒前
SciGPT应助san采纳,获得10
27秒前
27秒前
28秒前
28秒前
sissiarno应助Zkxxxx采纳,获得30
30秒前
30秒前
夏天发布了新的文献求助10
31秒前
31秒前
32秒前
夭夭发布了新的文献求助10
32秒前
33秒前
木木木发布了新的文献求助10
33秒前
Akim应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
高分求助中
Востребованный временем 2500
Agenda-setting and journalistic translation: The New York Times in English, Spanish and Chinese 1000
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3391511
求助须知:如何正确求助?哪些是违规求助? 3002625
关于积分的说明 8804775
捐赠科研通 2689201
什么是DOI,文献DOI怎么找? 1473018
科研通“疑难数据库(出版商)”最低求助积分说明 681311
邀请新用户注册赠送积分活动 674184