Study of Wind Power Prediction in ELM Based on Improved SSA

计算机科学 细胞生物学 生物
作者
Lei Shao,W. Huang,Hongli Liu,Li Ji
出处
期刊:Ieej Transactions on Electrical and Electronic Engineering [Wiley]
标识
DOI:10.1002/tee.24255
摘要

This paper proposes a short‐term wind power prediction model based on the improved Sparrow Search Algorithm (SSA) and Extreme Learning Machine(ELM) for anomalous wind power information from wind farms. The objective is to enhance the accuracy of short‐term wind power prediction. The model employs the extraction of features utilizing raw wind power history data from wind farms, in conjunction with the application of Variable Importance in Projection indices in Partial Least Squares (PLS‐VIP). As the ELM network model is susceptible to the influence of randomly generated input weights and thresholds at the outset of training, a solution is proposed whereby the input weights and thresholds of the ELM are optimized using SSA. The optimal weights and thresholds identified by SSA are then applied to the ELM model, thus forming the SSA‐ELM model. To address the limitations of traditional SSA, namely its susceptibility to local optimal solutions and poor global search ability, an improved SSA‐ELM algorithm is proposed. The improved SSA‐ELM algorithm introduces chaotic sequences and an exchange learning strategy to the original SSA. The rationale behind incorporating chaotic sequences is to enhance the quality of the initial solution, ensuring a more uniform distribution of sparrow positions and, consequently, a more diverse sparrow population. This, in turn, enables the algorithm to achieve a more effective global search capability through the utilization of the exchange learning strategy. Subsequently, all the data are fed into the SSA‐ELM model for prediction purposes. The simulation results demonstrate that the model exhibits enhanced prediction accuracy and improved practical applicability in wind power prediction. © 2025 Institute of Electrical Engineers of Japan. Published by Wiley Periodicals LLC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助猪猪采纳,获得10
1秒前
Jasper应助lobule采纳,获得10
1秒前
1秒前
小蘑菇应助妮儿采纳,获得10
2秒前
intrance发布了新的文献求助10
2秒前
ting完成签到,获得积分10
3秒前
惜曦发布了新的文献求助10
5秒前
远了个方发布了新的文献求助10
6秒前
远了个方发布了新的文献求助10
6秒前
6秒前
6秒前
DC完成签到,获得积分10
6秒前
搞怪绝悟应助Vicky采纳,获得10
8秒前
万能图书馆应助小王采纳,获得10
8秒前
JamesPei应助绿眼虫采纳,获得10
9秒前
Jasper应助奋斗的雅柔采纳,获得10
10秒前
HFELL发布了新的文献求助10
10秒前
妮儿发布了新的文献求助10
13秒前
黎明完成签到,获得积分10
14秒前
15秒前
顶顶顶完成签到 ,获得积分10
16秒前
16秒前
科研通AI2S应助tarako采纳,获得10
17秒前
绿眼虫发布了新的文献求助10
20秒前
科研通AI2S应助单纯采纳,获得10
20秒前
21秒前
21秒前
21秒前
小喻发布了新的文献求助10
22秒前
Vicky完成签到,获得积分10
24秒前
25秒前
26秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
领导范儿应助科研通管家采纳,获得10
28秒前
wanci应助科研通管家采纳,获得10
28秒前
小马甲应助科研通管家采纳,获得10
28秒前
科目三应助科研通管家采纳,获得10
28秒前
桐桐应助科研通管家采纳,获得10
28秒前
大个应助科研通管家采纳,获得10
28秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3397025
求助须知:如何正确求助?哪些是违规求助? 3006374
关于积分的说明 8820911
捐赠科研通 2693511
什么是DOI,文献DOI怎么找? 1475361
科研通“疑难数据库(出版商)”最低求助积分说明 682396
邀请新用户注册赠送积分活动 675703