Deep Opt: A structure optimization framework based on deep learning, and its application to micromixer optimization

物理 混合器 深度学习 人工智能 统计物理学 机器学习 微流控 计算机科学 热力学
作者
Tao Bu,Q.Y. Li,Jingtao Wang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (1)
标识
DOI:10.1063/5.0247049
摘要

In this work, a new structural optimization framework, Deep Opt, is developed. The framework was built based on deep learning and multi-objective genetic algorithm (NSGA-II) for a simple, novel micromixer optimization process of geometrical structures and operational conditions. First, the process of generating signed distance field (SDF) and computational fluid dynamics (CFD) datasets for different structural micromixers was automated based on Python scripts. Then, the two datasets were reconstructed separately using two encoder–decoder convolutional neural networks (ED-CNN), termed ED-SDF and ED-CFD. The surrogate model for subsequent optimization was created by connecting two neural networks in series. Finally, the optimal micromixer and its flow field distribution were determined by utilizing NSGA-II to perform a multi-objective (minimum pressure drop, maximum mixing index, and minimum mixing energy cost) optimization of the micromixer with two structural variables, the sum of the obstacle radius (Rsum), the ratio of the obstacle radius (Rratio), and a CFD variable Re. Compared with conventional optimization methods, Deep Opt is able to generate high-fidelity flow field for the corresponding structures while optimizing the structural parameters and CFD parameters. In addition, Deep Opt improves the scalability of the optimization process, enabling the customization of optimization targets without the need to reconstruct the dataset, improving the utilization of CFD data. In practice, the framework is not only limited to micromixer optimization but can also be applied to CFD optimization problems with general geometrical configurations, such as the design and optimization of airfoils, stirred tanks, and so on.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
健忘的寄瑶完成签到,获得积分10
刚刚
苽峰发布了新的文献求助10
1秒前
lllll07完成签到 ,获得积分10
2秒前
巴巴爸爸和他的孩子们完成签到,获得积分10
2秒前
medzhou完成签到,获得积分10
2秒前
满眼星辰发布了新的文献求助10
2秒前
记忆里的阳光完成签到,获得积分10
2秒前
李爱国应助快乐小狗采纳,获得10
2秒前
颜好发布了新的文献求助10
3秒前
小李同学发布了新的文献求助10
4秒前
水沐菁华完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
有魅力勒完成签到,获得积分10
7秒前
冶金人完成签到,获得积分10
7秒前
朴素小霜发布了新的文献求助10
8秒前
明钟达完成签到,获得积分10
8秒前
9秒前
diraczh完成签到,获得积分10
9秒前
书是人类进步的阶梯完成签到 ,获得积分10
9秒前
桑榆非晚完成签到,获得积分10
9秒前
彤航完成签到,获得积分10
9秒前
9秒前
丰富发布了新的文献求助30
10秒前
kiki完成签到,获得积分10
10秒前
风中的静珊完成签到 ,获得积分10
10秒前
10秒前
Jack完成签到,获得积分10
11秒前
快乐滑板应助uniphoton采纳,获得10
12秒前
搜集达人应助observer采纳,获得10
12秒前
边境发布了新的文献求助10
13秒前
享邑发布了新的文献求助10
13秒前
14秒前
zyfzyf完成签到,获得积分10
14秒前
研友_ndDY5n完成签到,获得积分10
14秒前
Liang完成签到 ,获得积分10
14秒前
14秒前
15秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Non-Crystalline Solids 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388762
求助须知:如何正确求助?哪些是违规求助? 3001026
关于积分的说明 8794854
捐赠科研通 2687295
什么是DOI,文献DOI怎么找? 1472013
科研通“疑难数据库(出版商)”最低求助积分说明 680720
邀请新用户注册赠送积分活动 673370