计算机科学
域适应
人工智能
图形
适应(眼睛)
领域(数学分析)
自然语言处理
机器学习
理论计算机科学
心理学
数学
数学分析
神经科学
分类器(UML)
作者
Zefeng Zheng,Shaohua Teng,Luyao Teng,Wei Zhang,Naiqi Wu
标识
DOI:10.1109/tpami.2024.3507534
摘要
Domain Adaptation (DA) is used to reduce cross-domain differences between the labeled source and unlabeled target domains. As the existing semantic-based DA approaches mainly focus on extracting consistent knowledge under semantic guidance, they may fail in acquiring (a) personalized knowledge between intra-class samples, and (b) local knowledge of neighbor samples from different categories. Hence, a multi-semantic-granularity and target-sample oriented approach, called Adaptive Graph Learning with Semantic Promotability (AGLSP), is proposed, which consists of three parts: (a) Adaptive Graph Embedding with Semantic Guidance (AGE-SG) that adaptively estimates the promotability of target samples and learns variant semantic and geometrical components from the source and those semantically promotable target samples; (b) Semantically Promotable Sample Enhancement (SPSE) that further increases the discriminability and adaptability of tag granularity by mining the features of intra-class source and semantically promotable target samples with multi-granularities; and (c) Adaptive Graph Learning with Implicit Semantic Preservation (AGL-ISP) that forms the tag granularity by extracting commonalities between the source and those semantically non-promotable target samples. As AGLSP learns more semantics from the two domains, more cross-domain knowledge is transferred. Mathematical proofs and extensive experiments on seven datasets demonstrate the performance of AGLSP.
科研通智能强力驱动
Strongly Powered by AbleSci AI