清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Spatial-temporal characteristics of carbon emissions corrected by socio-economic driving factors under land use changes in Sichuan Province, southwestern China

温室气体 环境科学 碳纤维 空间分布 土地利用 人口 中国 驱动因素 国内生产总值 空间变异性 自然地理学 环境保护 地理 自然资源经济学 生态学 遥感 数学 统计 经济 经济增长 考古 人口学 社会学 生物 复合数 算法
作者
Can Cai,Min Fan,Jing Yao,Lele Zhou,Yuanzhe Wang,Xiaoying Liang,Zhaoqiang Liu,Shu Chen
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:77: 102164-102164 被引量:30
标识
DOI:10.1016/j.ecoinf.2023.102164
摘要

The spatial-temporal distribution characteristics of carbon emissions under land use changes can fully reflect the impact of socio-economic development caused by human activities on terrestrial ecosystems. However, previous studies just focused on the traditional carbon emission coefficient method which was applied to calculate carbon emission amounts from different land use types at a large spatial scale over a long-time period. This approach did not consider the effects of spatial heterogeneity of socio-economic factors on carbon emissions, which can lead to overestimating and underestimating carbon emissions in intra-study areas. Therefore, it is urgent to build a corrected method integrating socio-economic factors into carbon emission calculation which can make up for this shortcoming. Firstly, this study calculated the carbon emissions under land use changes through the traditional method based on spatial maps of land uses and fossil energy consumption during 2000–2018 in 21 cities (states) in Sichuan Province. From 2000 to 2018, the overall carbon emissions increased by 43.14%, and the high and low carbon emission values occurred in the east and west of the study site, respectively. Chengdu had the largest carbon emissions, and its maximum value appeared in 2015. Only the Tibetan Autonomous Prefecture of Garz (Garz) had a negative carbon emission value. Furthermore, the total carbon emissions were significantly correlated with Gross Domestic Product (GDP) and population. This study then proposed a method to correct carbon emissions by considering the spatial heterogeneity of GDP and population. There were some obvious differences between uncorrected and corrected carbon emissions. From 2000 to 2018, the corrected carbon emissions also showed an increasing trend, but their values were much higher than uncorrected carbon emissions. The city (state) with the largest corrected carbon emissions was still in Chengdu but the maximum value occurred in 2018. The city (state) with negative corrected carbon emissions was still in Garz, but its corrected values were much lower than uncorrected carbon emissions. Additionally, the center of gravity of positive carbon emissions shifted from Ziyang before the correction to Chengdu after the correction during 2000–2018. In summary, the corrected carbon emissions proposed in this study by considering socio-economic driving factors can reflect an actual condition of carbon emissions from land use. The results can offer a scientific basis for the local government to construct low-carbon land use patterns in Sichuan Province. This approach can be promoted to calculate carbon emissions in other study sites at different spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狂野的含烟完成签到 ,获得积分10
3秒前
sissiarno应助科研通管家采纳,获得200
1分钟前
一盏壶完成签到,获得积分10
1分钟前
gmc完成签到 ,获得积分10
1分钟前
苗苗完成签到 ,获得积分10
1分钟前
萝卜猪完成签到,获得积分10
1分钟前
sadh2完成签到 ,获得积分10
2分钟前
leo完成签到 ,获得积分10
2分钟前
Owen应助ldtbest0525采纳,获得10
3分钟前
4分钟前
chenyue233发布了新的文献求助10
4分钟前
大医仁心完成签到 ,获得积分10
4分钟前
Chen完成签到 ,获得积分10
4分钟前
南星完成签到 ,获得积分10
4分钟前
5分钟前
迷人书蝶完成签到 ,获得积分10
5分钟前
11发布了新的文献求助30
5分钟前
5分钟前
ldtbest0525发布了新的文献求助10
5分钟前
ldtbest0525完成签到,获得积分10
6分钟前
6分钟前
菠萝发布了新的文献求助10
6分钟前
小二郎应助菠萝采纳,获得10
6分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
6分钟前
7分钟前
Omni发布了新的文献求助20
7分钟前
QCB完成签到 ,获得积分10
8分钟前
zsj完成签到 ,获得积分10
8分钟前
在水一方完成签到,获得积分0
8分钟前
小猪快跑完成签到 ,获得积分10
9分钟前
9分钟前
所所应助ldtbest0525采纳,获得10
10分钟前
lx关闭了lx文献求助
10分钟前
席江海完成签到,获得积分0
10分钟前
bji完成签到,获得积分10
10分钟前
GPTea举报Bo求助涉嫌违规
10分钟前
wh完成签到,获得积分10
11分钟前
Criminology34应助忐忑的甜瓜采纳,获得10
11分钟前
Qing完成签到 ,获得积分10
11分钟前
两个榴莲完成签到,获得积分0
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255192
求助须知:如何正确求助?哪些是违规求助? 4417829
关于积分的说明 13751783
捐赠科研通 4290779
什么是DOI,文献DOI怎么找? 2354372
邀请新用户注册赠送积分活动 1350970
关于科研通互助平台的介绍 1311383