已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial-temporal characteristics of carbon emissions corrected by socio-economic driving factors under land use changes in Sichuan Province, southwestern China

温室气体 环境科学 碳纤维 空间分布 土地利用 人口 中国 驱动因素 国内生产总值 空间变异性 自然地理学 环境保护 地理 自然资源经济学 生态学 遥感 数学 统计 经济 经济增长 考古 人口学 社会学 生物 复合数 算法
作者
Can Cai,Min Fan,Jing Yao,Lele Zhou,Yuanzhe Wang,Xiaoying Liang,Zhaoqiang Liu,Shu Chen
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:77: 102164-102164 被引量:30
标识
DOI:10.1016/j.ecoinf.2023.102164
摘要

The spatial-temporal distribution characteristics of carbon emissions under land use changes can fully reflect the impact of socio-economic development caused by human activities on terrestrial ecosystems. However, previous studies just focused on the traditional carbon emission coefficient method which was applied to calculate carbon emission amounts from different land use types at a large spatial scale over a long-time period. This approach did not consider the effects of spatial heterogeneity of socio-economic factors on carbon emissions, which can lead to overestimating and underestimating carbon emissions in intra-study areas. Therefore, it is urgent to build a corrected method integrating socio-economic factors into carbon emission calculation which can make up for this shortcoming. Firstly, this study calculated the carbon emissions under land use changes through the traditional method based on spatial maps of land uses and fossil energy consumption during 2000–2018 in 21 cities (states) in Sichuan Province. From 2000 to 2018, the overall carbon emissions increased by 43.14%, and the high and low carbon emission values occurred in the east and west of the study site, respectively. Chengdu had the largest carbon emissions, and its maximum value appeared in 2015. Only the Tibetan Autonomous Prefecture of Garz (Garz) had a negative carbon emission value. Furthermore, the total carbon emissions were significantly correlated with Gross Domestic Product (GDP) and population. This study then proposed a method to correct carbon emissions by considering the spatial heterogeneity of GDP and population. There were some obvious differences between uncorrected and corrected carbon emissions. From 2000 to 2018, the corrected carbon emissions also showed an increasing trend, but their values were much higher than uncorrected carbon emissions. The city (state) with the largest corrected carbon emissions was still in Chengdu but the maximum value occurred in 2018. The city (state) with negative corrected carbon emissions was still in Garz, but its corrected values were much lower than uncorrected carbon emissions. Additionally, the center of gravity of positive carbon emissions shifted from Ziyang before the correction to Chengdu after the correction during 2000–2018. In summary, the corrected carbon emissions proposed in this study by considering socio-economic driving factors can reflect an actual condition of carbon emissions from land use. The results can offer a scientific basis for the local government to construct low-carbon land use patterns in Sichuan Province. This approach can be promoted to calculate carbon emissions in other study sites at different spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
dax大雄完成签到 ,获得积分10
3秒前
5秒前
jfaioe完成签到,获得积分10
5秒前
学不死就往死里学关注了科研通微信公众号
6秒前
斯文败类应助炸年糕老彭采纳,获得10
7秒前
8秒前
tjnksy完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
鲤角兽完成签到,获得积分10
10秒前
ceeray23发布了新的文献求助50
10秒前
Jasper应助Louise采纳,获得10
11秒前
李李发布了新的文献求助10
12秒前
李健的小迷弟应助小付采纳,获得10
14秒前
14秒前
18秒前
19秒前
快乐冰之发布了新的文献求助50
19秒前
量子星尘发布了新的文献求助10
21秒前
李李完成签到,获得积分20
22秒前
mmmmk完成签到,获得积分10
22秒前
23秒前
xhylalalala发布了新的文献求助10
24秒前
25秒前
苇一完成签到,获得积分10
25秒前
Wang_JN完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
28秒前
ai zs发布了新的文献求助10
30秒前
xhylalalala完成签到,获得积分10
31秒前
橙子味的邱憨憨完成签到 ,获得积分10
32秒前
铃儿完成签到 ,获得积分10
34秒前
37秒前
土味霸总发布了新的文献求助30
37秒前
40秒前
钱百川发布了新的文献求助10
42秒前
量子星尘发布了新的文献求助10
45秒前
不吃草莓味完成签到 ,获得积分10
45秒前
Louise发布了新的文献求助10
46秒前
明理从露完成签到 ,获得积分10
49秒前
田様应助钱百川采纳,获得10
51秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666287
求助须知:如何正确求助?哪些是违规求助? 3225351
关于积分的说明 9762737
捐赠科研通 2935243
什么是DOI,文献DOI怎么找? 1607522
邀请新用户注册赠送积分活动 759252
科研通“疑难数据库(出版商)”最低求助积分说明 735185