已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spatial-temporal characteristics of carbon emissions corrected by socio-economic driving factors under land use changes in Sichuan Province, southwestern China

温室气体 环境科学 碳纤维 空间分布 土地利用 人口 中国 驱动因素 国内生产总值 空间变异性 自然地理学 环境保护 地理 自然资源经济学 生态学 遥感 数学 统计 经济 经济增长 考古 人口学 社会学 生物 复合数 算法
作者
Can Cai,Min Fan,Jing Yao,Lele Zhou,Yuanzhe Wang,Xiaoying Liang,Zhaoqiang Liu,Shu Chen
出处
期刊:Ecological Informatics [Elsevier]
卷期号:77: 102164-102164 被引量:30
标识
DOI:10.1016/j.ecoinf.2023.102164
摘要

The spatial-temporal distribution characteristics of carbon emissions under land use changes can fully reflect the impact of socio-economic development caused by human activities on terrestrial ecosystems. However, previous studies just focused on the traditional carbon emission coefficient method which was applied to calculate carbon emission amounts from different land use types at a large spatial scale over a long-time period. This approach did not consider the effects of spatial heterogeneity of socio-economic factors on carbon emissions, which can lead to overestimating and underestimating carbon emissions in intra-study areas. Therefore, it is urgent to build a corrected method integrating socio-economic factors into carbon emission calculation which can make up for this shortcoming. Firstly, this study calculated the carbon emissions under land use changes through the traditional method based on spatial maps of land uses and fossil energy consumption during 2000–2018 in 21 cities (states) in Sichuan Province. From 2000 to 2018, the overall carbon emissions increased by 43.14%, and the high and low carbon emission values occurred in the east and west of the study site, respectively. Chengdu had the largest carbon emissions, and its maximum value appeared in 2015. Only the Tibetan Autonomous Prefecture of Garz (Garz) had a negative carbon emission value. Furthermore, the total carbon emissions were significantly correlated with Gross Domestic Product (GDP) and population. This study then proposed a method to correct carbon emissions by considering the spatial heterogeneity of GDP and population. There were some obvious differences between uncorrected and corrected carbon emissions. From 2000 to 2018, the corrected carbon emissions also showed an increasing trend, but their values were much higher than uncorrected carbon emissions. The city (state) with the largest corrected carbon emissions was still in Chengdu but the maximum value occurred in 2018. The city (state) with negative corrected carbon emissions was still in Garz, but its corrected values were much lower than uncorrected carbon emissions. Additionally, the center of gravity of positive carbon emissions shifted from Ziyang before the correction to Chengdu after the correction during 2000–2018. In summary, the corrected carbon emissions proposed in this study by considering socio-economic driving factors can reflect an actual condition of carbon emissions from land use. The results can offer a scientific basis for the local government to construct low-carbon land use patterns in Sichuan Province. This approach can be promoted to calculate carbon emissions in other study sites at different spatial scales.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
开拖拉机的芍药完成签到 ,获得积分10
5秒前
文艺沛文发布了新的文献求助10
5秒前
Jasper应助一秋一年采纳,获得10
5秒前
tian发布了新的文献求助10
6秒前
娜扎完成签到,获得积分20
7秒前
9秒前
9秒前
掌柜完成签到,获得积分10
10秒前
10秒前
10秒前
娜扎发布了新的文献求助10
12秒前
掌柜发布了新的文献求助10
13秒前
13秒前
刘平平发布了新的文献求助10
14秒前
流星发布了新的文献求助10
15秒前
16秒前
齐小明发布了新的文献求助10
16秒前
17秒前
SciGPT应助文艺沛文采纳,获得10
18秒前
勤奋迎天完成签到,获得积分10
21秒前
22秒前
sunboy14521完成签到 ,获得积分10
22秒前
一秋一年发布了新的文献求助10
22秒前
HYT完成签到 ,获得积分10
24秒前
NexusExplorer应助仁爱的平彤采纳,获得10
24秒前
26秒前
Orange应助齐小明采纳,获得10
27秒前
Singularity应助娜扎采纳,获得10
28秒前
DHL完成签到,获得积分10
29秒前
29秒前
wangfeng007发布了新的文献求助10
30秒前
牟翎发布了新的文献求助20
32秒前
潘丝洞完成签到,获得积分10
33秒前
松门紫藤发布了新的文献求助20
37秒前
科研通AI2S应助ruru采纳,获得10
37秒前
Owen应助carbonell采纳,获得10
37秒前
juziyaya应助charles采纳,获得10
40秒前
顾矜应助刘星星采纳,获得10
41秒前
Dr.完成签到 ,获得积分10
42秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142320
求助须知:如何正确求助?哪些是违规求助? 2793260
关于积分的说明 7806108
捐赠科研通 2449516
什么是DOI,文献DOI怎么找? 1303345
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300