Morphological Design for Pneumatic Soft Actuators and Robots With Desired Deformation Behavior

执行机构 机器人 控制理论(社会学) 计算机科学 非线性系统 可控性 软机器人 形状优化 顺应机制 边界(拓扑) 有限元法 人工智能 数学 工程类 数学分析 结构工程 物理 控制(管理) 量子力学 应用数学
作者
Feifei Chen,Zenan Song,Shitong Chen,Guoying Gu,Xiangyang Zhu
出处
期刊:IEEE Transactions on Robotics [Institute of Electrical and Electronics Engineers]
卷期号:39 (6): 4408-4428 被引量:8
标识
DOI:10.1109/tro.2023.3323825
摘要

A homogeneous pneumatic soft robot may generate complex output motions using a simple input pressure, resulting from its morphological shape that locally deforms the soft material to different degrees by simultaneously tailoring the structural characteristics and orienting the input pressure. To date, design of the morphological shape (inverse problem) has not been fully addressed. This article outlines a geometry–mechanics–optimization integrated approach to automatically shaping a pneumatic soft actuator or robot that achieves the desired deformation behavior. Instead of constraining the robot's geometry within any predefined regular shape, we employ B-splines to allow generation of freeform boundary surfaces, and use nonlinear mechanical modelling and shape derivative based optimization to navigate the high-dimensional design space. Our design framework can readily regulate the surface quality during the morphological evolution, by imposing the geometric constraints in terms of the principal curvatures and the minimal distance between surfaces as penalty functions. The effect of external forces including the gravity and the interaction force at the end-effector is also taken into account to generalize the method for design problems in which the load capability is also pursued. To improve the computational efficiency, suboptimization problems are constructed within a trust region in which the displacement-dependent objective function is approximated by its first-order Taylor polynomial based on the gradient information to avoid frequently performing time-consuming nonlinear finite element analysis. The suboptimization problems are then solved by the quasi-Newton method combined with the backtracking line search strategy. We showcase various applications to validate our design approach, including actuators for basic extension, bending, and twisting motions, and continuous robot arms that can perform desired in-plane and out-of-plane configurations. We also show that our method can address design of multiple chambers for achieving multiple target deformation behaviors, by co-optimizing the morphological shape and air pressures, which is validated by two examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wsnice应助呼呼采纳,获得20
刚刚
科研通AI5应助善良的路灯采纳,获得10
刚刚
2秒前
司马天寿完成签到,获得积分20
4秒前
4秒前
汤圆完成签到,获得积分10
5秒前
bitahu发布了新的文献求助10
5秒前
希望天下0贩的0应助lixm采纳,获得10
5秒前
科研通AI2S应助敦敦采纳,获得10
6秒前
7秒前
_呱_应助楼台杏花琴弦采纳,获得50
8秒前
咸鱼一号发布了新的文献求助10
8秒前
正经俠发布了新的文献求助10
8秒前
李志远完成签到,获得积分10
9秒前
ghh发布了新的文献求助10
9秒前
10秒前
77paocai完成签到,获得积分10
11秒前
CCL完成签到,获得积分10
12秒前
明亮的绫完成签到 ,获得积分10
12秒前
祖诗云完成签到,获得积分0
13秒前
jiewen发布了新的文献求助10
15秒前
15秒前
Oz完成签到,获得积分10
15秒前
zhukun发布了新的文献求助10
16秒前
16秒前
19秒前
香蕉觅云应助oliver501采纳,获得10
19秒前
正经俠完成签到 ,获得积分20
20秒前
YY完成签到 ,获得积分10
21秒前
清秀灵薇发布了新的文献求助10
21秒前
LZL完成签到 ,获得积分10
21秒前
油焖青椒完成签到,获得积分10
21秒前
不会学术的羊完成签到,获得积分10
22秒前
22秒前
lio完成签到,获得积分20
23秒前
23秒前
FashionBoy应助汤浩宏采纳,获得10
24秒前
wjwless完成签到,获得积分10
25秒前
稀罕你发布了新的文献求助10
25秒前
圣晟胜发布了新的文献求助10
25秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849