An Information-Assisted Deep Reinforcement Learning Path Planning Scheme for Dynamic and Unknown Underwater Environment

强化学习 计算机科学 稳健性(进化) 水下 一般化 运动规划 人工智能 机器人 数学 生物化学 基因 海洋学 地质学 数学分析 化学
作者
Meng Xi,Jiachen Yang,Jiabao Wen,Zhengjian Li,Wen Lu,Xinbo Gao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:4
标识
DOI:10.1109/tnnls.2023.3332172
摘要

An autonomous underwater vehicle (AUV) has shown impressive potential and promising exploitation prospects in numerous marine missions. Among its various applications, the most essential prerequisite is path planning. Although considerable endeavors have been made, there are several limitations. A complete and realistic ocean simulation environment is critically needed. As most of the existing methods are based on mathematical models, they suffer from a large gap with reality. At the same time, the dynamic and unknown environment places high demands on robustness and generalization. In order to overcome these limitations, we propose an information-assisted reinforcement learning path planning scheme. First, it performs numerical modeling based on real ocean current observations to establish a complete simulation environment with the grid method, including 3-D terrain, dynamic currents, local information, and so on. Next, we propose an information compression (IC) scheme to trim the mutual information (MI) between reinforcement learning neural network layers to improve generalization. A proof based on information theory provides solid support for this. Moreover, for the dynamic characteristics of the marine environment, we elaborately design a confidence evaluator (CE), which evaluates the correlation between two adjacent frames of ocean currents to provide confidence for the action. The performance of our method has been evaluated and proven by numerical results, which demonstrate a fair sensitivity to ocean currents and high robustness and generalization to cope with the dynamic and unknown underwater environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助何方采纳,获得30
1秒前
2秒前
Echo发布了新的文献求助10
2秒前
kalani完成签到,获得积分10
2秒前
3秒前
3秒前
bkagyin应助Jello采纳,获得10
3秒前
亚亚完成签到 ,获得积分10
3秒前
范范发布了新的文献求助10
3秒前
Ruogu发布了新的文献求助10
4秒前
yicheng发布了新的文献求助10
4秒前
蜗牛二世完成签到,获得积分0
4秒前
5秒前
5秒前
5秒前
新羽完成签到,获得积分10
6秒前
7秒前
河师大完成签到,获得积分10
7秒前
7秒前
义气的面包完成签到,获得积分10
7秒前
8秒前
9秒前
Tomoyo完成签到,获得积分10
9秒前
wing驳回了JamesPei应助
9秒前
Ruogu完成签到,获得积分10
9秒前
新羽发布了新的文献求助10
10秒前
善学以致用应助能干蜜蜂采纳,获得10
10秒前
10秒前
英俊的铭应助一只桶采纳,获得10
10秒前
10秒前
耶格尔发布了新的文献求助10
10秒前
11秒前
蔷薇果完成签到 ,获得积分10
11秒前
12秒前
Qi应助背后的傥采纳,获得10
12秒前
刻苦耳机发布了新的文献求助10
12秒前
我是你奶发布了新的文献求助10
12秒前
raffia发布了新的文献求助10
12秒前
外向寄云发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553714
求助须知:如何正确求助?哪些是违规求助? 3129536
关于积分的说明 9382934
捐赠科研通 2828669
什么是DOI,文献DOI怎么找? 1555104
邀请新用户注册赠送积分活动 725831
科研通“疑难数据库(出版商)”最低求助积分说明 715267