生物
变形
电池类型
转录组
细胞生物学
家蚕
家蚕
幼虫
细胞
星形胶质细胞
胚胎干细胞
神经科学
基因表达
基因
中枢神经系统
植物
遗传学
作者
X Y Liu,Zhongjie Zhang,Bo Hu,Kai Chen,Ye Yu,Hui Xiang,Anjiang Tan
出处
期刊:Insect Science
[Wiley]
日期:2023-11-20
卷期号:31 (4): 1041-1054
被引量:1
标识
DOI:10.1111/1744-7917.13294
摘要
Abstract The diversity of cell types in the brain and how these change during different developmental stages, remains largely unknown. The life cycle of insects is short and goes through 4 distinct stages including embryonic, larval, pupal, and adult stages. During postembryonic life, the larval brain transforms into a mature adult version after metamorphosis. The silkworm, Bombyx mori , is a lepidopteran model insect. Here, we characterized the brain cell repertoire of larval and adult B. mori by obtaining 50 708 single‐cell transcriptomes. Seventeen and 12 cell clusters from larval and adult brains were assigned based on marker genes, respectively. Identified cell types include Kenyon cells, optic lobe cells, monoaminergic neurons, surface glia, and astrocyte glia. We further assessed the cell type compositions of larval and adult brains. We found that the transition from larva to adult resulted in great expansion of glial cells. The glial cell accounted for 49.8% of adult midbrain cells. Compared to flies and ants, the mushroom body kenyon cell is insufficient in B. mori , which accounts for 5.4% and 3.6% in larval and adult brains, respectively. Analysis of neuropeptide expression showed that the abundance and specificity of expression varied among individual neuropeptides. Intriguingly, we found that ion transport peptide was specifically expressed in glial cells of larval and adult brains. The cell atlas dataset provides an important resource to explore cell diversity, neural circuits and genetic profiles.
科研通智能强力驱动
Strongly Powered by AbleSci AI