Rock-physics-guided machine learning for shear sonic log prediction

岩石物理学 机器学习 人工神经网络 测井 储层建模 物理定律 剪切(地质) 一般化 人工智能 计算机科学 地质学 数学 地球物理学 岩土工程 物理 数学分析 量子力学 岩石学 多孔性
作者
Luanxiao Zhao,Jingyu Liu,Minghui Xu,Zhenyu Zhu,Yuanyuan Chen,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): D75-D87 被引量:13
标识
DOI:10.1190/geo2023-0152.1
摘要

ABSTRACT The S-wave velocity (VS) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. Nevertheless, obtaining shear sonic log is frequently challenging because of its high economic, time, and operating costs. Conventional methods for predicting VS rely on empirical relationships and rock-physics models, which often fall short in accuracy due to their inability to account for the complex factors influencing the relationship between VS and other parameters. We develop a physics-guided machine learning (ML) approach to predict the shear sonic log using various physical parameters (e.g., natural gamma ray, P-wave velocity, density, and resistivity) that can be readily obtained from standard logging suites. Three types of rock-physical constraints combined with three guidance strategies form the various physics-guided models. Specifically, the three constraint models include mudrock line, empirical P- and S-wave velocity relationship, and multiparameter regression from the logging data, and the three guidance strategies involve physics-guided pseudolabels, physics-guided loss function, and transfer learning. To assess the model’s generalization ability and simulate the lack of labeled data in real-world applications, a single well is used as a training well, whereas the remaining four wells are used to blind test in a clastic reservoir. Compared with supervised ML without any constraints, all models incorporating physical constraints demonstrate a significant improvement in prediction accuracy and generalization performance. This underscores the importance of integrating the first-order physical laws into the network training for shear sonic log prediction. The most successful approach combines the multiparameter regression relationship with the physics-guided pseudolabels in this case, resulting in a remarkable 47% reduction in the average root-mean-square error during the blind test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
何hh完成签到,获得积分20
刚刚
简单花花发布了新的文献求助50
1秒前
小马甲应助清爽的晓啸采纳,获得10
2秒前
Yashyi发布了新的文献求助10
2秒前
3秒前
打打应助wzc采纳,获得10
3秒前
耶斯发布了新的文献求助10
4秒前
5秒前
阿星发布了新的文献求助10
5秒前
七色蔷薇完成签到,获得积分10
6秒前
无私怜容发布了新的文献求助10
6秒前
自然凌旋完成签到,获得积分10
8秒前
科研通AI6应助苒苒采纳,获得10
8秒前
8秒前
李健应助芝士采纳,获得30
8秒前
深情安青应助芝士采纳,获得10
8秒前
汉堡包应助芝士采纳,获得10
8秒前
9秒前
9秒前
Akim应助早日毕业采纳,获得10
9秒前
10秒前
szp发布了新的文献求助10
10秒前
小葵完成签到 ,获得积分10
10秒前
ding应助LHT采纳,获得10
11秒前
威龙觉醒完成签到,获得积分20
11秒前
11秒前
自然凌旋发布了新的文献求助10
11秒前
11秒前
12秒前
殷勤的帽子完成签到 ,获得积分10
13秒前
大个应助苒苒采纳,获得10
14秒前
唐宇欣完成签到,获得积分10
14秒前
15秒前
香蕉觅云应助九有乔木采纳,获得10
15秒前
cg完成签到 ,获得积分10
15秒前
15秒前
英姑应助拼搏的二哈采纳,获得10
15秒前
zz发布了新的文献求助10
15秒前
无情的宛儿完成签到,获得积分10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589147
求助须知:如何正确求助?哪些是违规求助? 4672942
关于积分的说明 14790572
捐赠科研通 4627592
什么是DOI,文献DOI怎么找? 2532071
邀请新用户注册赠送积分活动 1500734
关于科研通互助平台的介绍 1468396