Rock-physics-guided machine learning for shear sonic log prediction

岩石物理学 机器学习 人工神经网络 测井 储层建模 物理定律 剪切(地质) 一般化 人工智能 计算机科学 地质学 数学 地球物理学 岩土工程 物理 数学分析 量子力学 岩石学 多孔性
作者
Luanxiao Zhao,Jingyu Liu,Minghui Xu,Zhenyu Zhu,Yuanyuan Chen,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): D75-D87 被引量:1
标识
DOI:10.1190/geo2023-0152.1
摘要

The S-wave velocity ([Formula: see text]) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. Nevertheless, obtaining shear sonic log is frequently challenging because of its high economic, time, and operating costs. Conventional methods for predicting [Formula: see text] rely on empirical relationships and rock-physics models, which often fall short in accuracy due to their inability to account for the complex factors influencing the relationship between [Formula: see text] and other parameters. We develop a physics-guided machine learning (ML) approach to predict the shear sonic log using various physical parameters (e.g., natural gamma ray, P-wave velocity, density, and resistivity) that can be readily obtained from standard logging suites. Three types of rock-physical constraints combined with three guidance strategies form the various physics-guided models. Specifically, the three constraint models include mudrock line, empirical P- and S-wave velocity relationship, and multiparameter regression from the logging data, and the three guidance strategies involve physics-guided pseudolabels, physics-guided loss function, and transfer learning. To assess the model’s generalization ability and simulate the lack of labeled data in real-world applications, a single well is used as a training well, whereas the remaining four wells are used to blind test in a clastic reservoir. Compared with supervised ML without any constraints, all models incorporating physical constraints demonstrate a significant improvement in prediction accuracy and generalization performance. This underscores the importance of integrating the first-order physical laws into the network training for shear sonic log prediction. The most successful approach combines the multiparameter regression relationship with the physics-guided pseudolabels in this case, resulting in a remarkable 47% reduction in the average root-mean-square error during the blind test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞翔的小舟完成签到,获得积分20
刚刚
csa1007完成签到,获得积分10
刚刚
纷纷故事完成签到,获得积分10
1秒前
1秒前
哲999发布了新的文献求助10
1秒前
麦苳完成签到,获得积分10
1秒前
2秒前
汉堡包应助JIE采纳,获得10
2秒前
伏地魔完成签到,获得积分10
2秒前
3秒前
yyf完成签到,获得积分10
3秒前
XWT完成签到,获得积分10
3秒前
虚安完成签到 ,获得积分10
3秒前
xqy完成签到 ,获得积分10
3秒前
啵乐乐发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
momo完成签到,获得积分10
5秒前
慕青应助饕餮1235采纳,获得10
5秒前
小蘑菇应助CC采纳,获得10
6秒前
白白完成签到,获得积分10
6秒前
6秒前
6秒前
苏苏完成签到,获得积分10
7秒前
7秒前
wu完成签到,获得积分10
7秒前
7秒前
8秒前
MADKAI发布了新的文献求助10
8秒前
8秒前
李健的小迷弟应助111采纳,获得10
9秒前
Accept应助wintercyan采纳,获得20
9秒前
哲999完成签到,获得积分10
9秒前
Mian完成签到,获得积分10
9秒前
10秒前
10秒前
于嗣濠完成签到 ,获得积分10
10秒前
36456657应助CC采纳,获得10
10秒前
优雅山柏发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740