重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Rock-physics-guided machine learning for shear sonic log prediction

岩石物理学 机器学习 人工神经网络 测井 储层建模 物理定律 剪切(地质) 一般化 人工智能 计算机科学 地质学 数学 地球物理学 岩土工程 物理 数学分析 量子力学 岩石学 多孔性
作者
Luanxiao Zhao,Jingyu Liu,Minghui Xu,Zhenyu Zhu,Yuanyuan Chen,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): D75-D87 被引量:2
标识
DOI:10.1190/geo2023-0152.1
摘要

The S-wave velocity ([Formula: see text]) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. Nevertheless, obtaining shear sonic log is frequently challenging because of its high economic, time, and operating costs. Conventional methods for predicting [Formula: see text] rely on empirical relationships and rock-physics models, which often fall short in accuracy due to their inability to account for the complex factors influencing the relationship between [Formula: see text] and other parameters. We develop a physics-guided machine learning (ML) approach to predict the shear sonic log using various physical parameters (e.g., natural gamma ray, P-wave velocity, density, and resistivity) that can be readily obtained from standard logging suites. Three types of rock-physical constraints combined with three guidance strategies form the various physics-guided models. Specifically, the three constraint models include mudrock line, empirical P- and S-wave velocity relationship, and multiparameter regression from the logging data, and the three guidance strategies involve physics-guided pseudolabels, physics-guided loss function, and transfer learning. To assess the model’s generalization ability and simulate the lack of labeled data in real-world applications, a single well is used as a training well, whereas the remaining four wells are used to blind test in a clastic reservoir. Compared with supervised ML without any constraints, all models incorporating physical constraints demonstrate a significant improvement in prediction accuracy and generalization performance. This underscores the importance of integrating the first-order physical laws into the network training for shear sonic log prediction. The most successful approach combines the multiparameter regression relationship with the physics-guided pseudolabels in this case, resulting in a remarkable 47% reduction in the average root-mean-square error during the blind test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ti发布了新的文献求助150
刚刚
3秒前
yanj520925关注了科研通微信公众号
3秒前
土管学生完成签到 ,获得积分10
4秒前
qyn1234566完成签到,获得积分10
4秒前
4秒前
scimaker完成签到,获得积分20
5秒前
6秒前
kuaikuailele完成签到,获得积分10
7秒前
木木完成签到,获得积分10
7秒前
8秒前
华仔应助张可心采纳,获得10
8秒前
活力半凡完成签到,获得积分20
8秒前
9秒前
10秒前
yunyueqixun完成签到,获得积分10
11秒前
袁世行完成签到,获得积分20
11秒前
11秒前
棒棒糖发布了新的文献求助10
11秒前
玉洁发布了新的文献求助10
11秒前
韶安萱发布了新的文献求助10
12秒前
dynamoo应助yyyyyyyy采纳,获得10
13秒前
14秒前
14秒前
斯文败类应助scimaker采纳,获得10
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
木木发布了新的文献求助10
15秒前
甜美千山完成签到 ,获得积分10
16秒前
16秒前
16秒前
cry发布了新的文献求助10
16秒前
嘉欣完成签到,获得积分10
18秒前
小梁发布了新的文献求助10
18秒前
河豚素应助科研通管家采纳,获得10
19秒前
小明应助科研通管家采纳,获得10
19秒前
无极微光应助科研通管家采纳,获得10
19秒前
浮游应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
棒棒糖完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467931
求助须知:如何正确求助?哪些是违规求助? 4571421
关于积分的说明 14330283
捐赠科研通 4497999
什么是DOI,文献DOI怎么找? 2464266
邀请新用户注册赠送积分活动 1453006
关于科研通互助平台的介绍 1427707