清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Rock-physics-guided machine learning for shear sonic log prediction

岩石物理学 机器学习 人工神经网络 测井 储层建模 物理定律 剪切(地质) 一般化 人工智能 计算机科学 地质学 数学 地球物理学 岩土工程 物理 数学分析 量子力学 岩石学 多孔性
作者
Luanxiao Zhao,Jingyu Liu,Minghui Xu,Zhenyu Zhu,Yuanyuan Chen,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): D75-D87 被引量:13
标识
DOI:10.1190/geo2023-0152.1
摘要

ABSTRACT The S-wave velocity (VS) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. Nevertheless, obtaining shear sonic log is frequently challenging because of its high economic, time, and operating costs. Conventional methods for predicting VS rely on empirical relationships and rock-physics models, which often fall short in accuracy due to their inability to account for the complex factors influencing the relationship between VS and other parameters. We develop a physics-guided machine learning (ML) approach to predict the shear sonic log using various physical parameters (e.g., natural gamma ray, P-wave velocity, density, and resistivity) that can be readily obtained from standard logging suites. Three types of rock-physical constraints combined with three guidance strategies form the various physics-guided models. Specifically, the three constraint models include mudrock line, empirical P- and S-wave velocity relationship, and multiparameter regression from the logging data, and the three guidance strategies involve physics-guided pseudolabels, physics-guided loss function, and transfer learning. To assess the model’s generalization ability and simulate the lack of labeled data in real-world applications, a single well is used as a training well, whereas the remaining four wells are used to blind test in a clastic reservoir. Compared with supervised ML without any constraints, all models incorporating physical constraints demonstrate a significant improvement in prediction accuracy and generalization performance. This underscores the importance of integrating the first-order physical laws into the network training for shear sonic log prediction. The most successful approach combines the multiparameter regression relationship with the physics-guided pseudolabels in this case, resulting in a remarkable 47% reduction in the average root-mean-square error during the blind test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
有人应助科研通管家采纳,获得10
10秒前
有人应助科研通管家采纳,获得10
10秒前
无极微光应助科研通管家采纳,获得50
10秒前
无极微光应助科研通管家采纳,获得50
10秒前
10秒前
10秒前
有人应助科研通管家采纳,获得10
10秒前
有人应助科研通管家采纳,获得10
10秒前
有人应助科研通管家采纳,获得10
10秒前
有人应助科研通管家采纳,获得10
10秒前
有人应助科研通管家采纳,获得10
10秒前
有人应助科研通管家采纳,获得10
11秒前
有人应助科研通管家采纳,获得10
11秒前
NINI完成签到 ,获得积分10
54秒前
Raymond完成签到,获得积分10
55秒前
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
小二郎应助科研通管家采纳,获得10
2分钟前
有人应助科研通管家采纳,获得10
2分钟前
非哲完成签到 ,获得积分10
2分钟前
2分钟前
白瑾完成签到 ,获得积分10
2分钟前
2分钟前
飘逸的孤丹关注了科研通微信公众号
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
xinjie发布了新的文献求助10
3分钟前
3分钟前
4分钟前
搜集达人应助科研通管家采纳,获得10
4分钟前
快乐随心完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789013
求助须知:如何正确求助?哪些是违规求助? 5714309
关于积分的说明 15474060
捐赠科研通 4916947
什么是DOI,文献DOI怎么找? 2646665
邀请新用户注册赠送积分活动 1594331
关于科研通互助平台的介绍 1548791