Rock-physics-guided machine learning for shear sonic log prediction

岩石物理学 机器学习 人工神经网络 测井 储层建模 物理定律 剪切(地质) 一般化 人工智能 计算机科学 地质学 数学 地球物理学 岩土工程 物理 数学分析 量子力学 岩石学 多孔性
作者
Luanxiao Zhao,Jingyu Liu,Minghui Xu,Zhenyu Zhu,Yuanyuan Chen,Jianhua Geng
出处
期刊:Geophysics [Society of Exploration Geophysicists]
卷期号:89 (1): D75-D87 被引量:2
标识
DOI:10.1190/geo2023-0152.1
摘要

The S-wave velocity ([Formula: see text]) is a vital parameter for various petrophysical, geophysical, and geomechanical applications in subsurface characterization. Nevertheless, obtaining shear sonic log is frequently challenging because of its high economic, time, and operating costs. Conventional methods for predicting [Formula: see text] rely on empirical relationships and rock-physics models, which often fall short in accuracy due to their inability to account for the complex factors influencing the relationship between [Formula: see text] and other parameters. We develop a physics-guided machine learning (ML) approach to predict the shear sonic log using various physical parameters (e.g., natural gamma ray, P-wave velocity, density, and resistivity) that can be readily obtained from standard logging suites. Three types of rock-physical constraints combined with three guidance strategies form the various physics-guided models. Specifically, the three constraint models include mudrock line, empirical P- and S-wave velocity relationship, and multiparameter regression from the logging data, and the three guidance strategies involve physics-guided pseudolabels, physics-guided loss function, and transfer learning. To assess the model’s generalization ability and simulate the lack of labeled data in real-world applications, a single well is used as a training well, whereas the remaining four wells are used to blind test in a clastic reservoir. Compared with supervised ML without any constraints, all models incorporating physical constraints demonstrate a significant improvement in prediction accuracy and generalization performance. This underscores the importance of integrating the first-order physical laws into the network training for shear sonic log prediction. The most successful approach combines the multiparameter regression relationship with the physics-guided pseudolabels in this case, resulting in a remarkable 47% reduction in the average root-mean-square error during the blind test.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
fighting发布了新的文献求助10
刚刚
豆豆发布了新的文献求助10
刚刚
无花果应助思无邪采纳,获得10
刚刚
852应助Keily采纳,获得20
刚刚
1秒前
8R60d8应助hui采纳,获得10
1秒前
1秒前
1秒前
小蘑菇应助linmo采纳,获得10
1秒前
2秒前
2秒前
葡萄酒发布了新的文献求助10
3秒前
崔崔完成签到 ,获得积分10
3秒前
3秒前
4秒前
小巧以珊完成签到,获得积分10
4秒前
xiying发布了新的文献求助10
5秒前
科目三应助鱼鱼片片采纳,获得10
5秒前
yuhaolove发布了新的文献求助10
5秒前
MFiWanting完成签到,获得积分10
6秒前
6秒前
ding应助nesire采纳,获得10
6秒前
Xe完成签到,获得积分10
6秒前
心安完成签到,获得积分10
6秒前
Lucas完成签到,获得积分10
6秒前
6秒前
白敬亭发布了新的文献求助10
7秒前
慕青应助章鱼饭采纳,获得10
7秒前
科研小哥完成签到,获得积分0
8秒前
8秒前
8秒前
四月想毕业完成签到,获得积分10
8秒前
严泰完成签到,获得积分10
8秒前
沐沐溪三清完成签到,获得积分10
8秒前
8秒前
9秒前
sunny30发布了新的文献求助10
9秒前
9秒前
9秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951920
求助须知:如何正确求助?哪些是违规求助? 3497285
关于积分的说明 11086653
捐赠科研通 3227867
什么是DOI,文献DOI怎么找? 1784535
邀请新用户注册赠送积分活动 868732
科研通“疑难数据库(出版商)”最低求助积分说明 801180