Unleashing the Power of Bayesian Re-Analysis: Enhancing Insights into Lecanemab (Clarity AD) Phase III Trial Through Informed t-Test

无效假设 临床试验 贝叶斯概率 医学 先验概率 统计假设检验 统计能力 临床终点 临床痴呆评级 统计 痴呆 疾病 内科学 数学
作者
Tommaso Costa,Enrico Premi,Donato Liloia,Franco Cauda,Jordi Manuello
出处
期刊:Journal of Alzheimer's Disease [IOS Press]
卷期号:95 (3): 1059-1065 被引量:1
标识
DOI:10.3233/jad-230589
摘要

Background: Clinical trials targeting Alzheimer’s disease (AD) aim to alleviate clinical symptoms and alter the course of this complex neurodegenerative disorder. However, the conventional approach of null hypothesis significance testing (NHST) commonly employed in such trials has inherent limitations in assessing clinical significance and capturing nuanced evidence of effectiveness on a continuous scale. Objective: In this study, we conducted a re-analysis of the phase III trial of lecanemab, a recently proposed humanized IgG1 monoclonal antibody with high affinity for Aβ soluble protofibrils, using a Bayesian approach with informed t-test priors. Methods: To achieve this, we carefully selected trial data and derived effect size estimates for the primary endpoint, the Clinical Dementia Rating Scale-Sum of Boxes (CDR-SB). Subsequently, a series of Bayes Factor analyses were performed to compare evidence supporting the null hypothesis (no treatment effect) versus the alternative hypothesis (presence of an effect). Drawing on relevant literature and the lecanemab phase III trial, we incorporated different minimal clinically important difference (MCID) values for the primary endpoint CDR-SB as prior information. Results: Our findings, based on a standard prior, revealed anecdotal evidence favoring the null hypothesis. Additional robustness checks yielded consistent results. However, when employing informed priors, we observed varying evidence across different MCID values, ultimately indicating no support for the effectiveness of lecanemab over placebo. Conclusion: Our study underscores the value of Bayesian analysis in clinical trials while emphasizing the importance of incorporating MCID and effect size granularity to accurately assess treatment efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
传奇3应助钱浩采纳,获得10
2秒前
2秒前
情怀应助kongchao008采纳,获得10
3秒前
zzd发布了新的文献求助10
3秒前
坦白Ccc完成签到,获得积分10
3秒前
fionaFDU完成签到,获得积分10
4秒前
4秒前
wisdom完成签到,获得积分10
4秒前
卷大喵完成签到,获得积分10
4秒前
腼腆的傲薇完成签到 ,获得积分10
4秒前
科研通AI2S应助冷艳笑卉采纳,获得10
4秒前
4秒前
Maple发布了新的文献求助10
4秒前
沉默的秋白完成签到,获得积分10
4秒前
swing完成签到 ,获得积分10
5秒前
5秒前
5秒前
lbb发布了新的文献求助10
5秒前
JamesPei应助伶俐的高烽采纳,获得10
6秒前
茶果完成签到,获得积分10
6秒前
专注的飞瑶完成签到 ,获得积分10
6秒前
郑荻凡发布了新的文献求助10
7秒前
7秒前
briliian发布了新的文献求助10
7秒前
wcuzhl完成签到,获得积分10
8秒前
Owen应助ark861023采纳,获得10
8秒前
火星上的藏鸟完成签到 ,获得积分10
8秒前
ListenLee发布了新的文献求助10
8秒前
hupx完成签到 ,获得积分10
9秒前
琛哥物理发布了新的文献求助10
9秒前
Chonwal发布了新的文献求助10
9秒前
Jessie完成签到,获得积分10
9秒前
笨笨竹尔发布了新的文献求助10
9秒前
辛勤俊驰发布了新的文献求助10
9秒前
木子yuchen发布了新的文献求助80
9秒前
zzd完成签到,获得积分10
10秒前
10秒前
11秒前
Fiona000001完成签到,获得积分10
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143174
求助须知:如何正确求助?哪些是违规求助? 2794297
关于积分的说明 7810446
捐赠科研通 2450505
什么是DOI,文献DOI怎么找? 1303862
科研通“疑难数据库(出版商)”最低求助积分说明 627081
版权声明 601384