GNSS-INS-Dynamic Fusion with Robustness to Outliers Based on External Force State Estimation

计算机科学 扩展卡尔曼滤波器 稳健性(进化) 控制理论(社会学) 离群值 卡尔曼滤波器 传感器融合 全球导航卫星系统应用 人工智能 算法 全球定位系统 控制(管理) 生物化学 电信 基因 化学
作者
Xiaoyu Ye,Fujun Song,Tao Meng,Yang Guo,Qinghua Zeng
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (1): 015113-015113
标识
DOI:10.1088/1361-6501/acfe2a
摘要

Abstract Multi-source information fusion state estimation algorithms are an important means for drones to perceive ego-state, and accurate and robust estimation of external forces is crucial for precise control of quadrotors. This paper proposes a method that integrates a dynamic model into a multi-rate extended Kalman filter (EKF) framework on manifold. By estimating the magnitude of the external force acting on vehicle, meanwhile, a dynamic constraint on velocity loop is established to reduce the discrepancy between the model-predicted motion and the actual motion. Moreover, the estimated external force is integrated into the zero velocity update criterion for zero speed judgment, effectively reducing false detections while improving the accuracy of zero speed state recognition. However, multi-source measurements significantly increase the probability of data signal errors. To address this issue, we use a robust estimation algorithm to improve EKF’s sensitivity to abnormal measurements, flexibly adjusting measurement weights while rejecting unreasonable measurements. Validation with open-source indoor and outdoor datasets shows that our algorithm improves pose estimation performance while maintaining accurate positioning accuracy compared to non-dynamic fusion under the same filtering parameters, particularly in global navigation satellite system short time denied. It provides accurate external force estimation, offering multi-source data support in areas such as human–machine interaction and carrying variable mass payloads.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
谦让语兰完成签到,获得积分10
1秒前
小初完成签到,获得积分20
1秒前
gww发布了新的文献求助10
2秒前
2秒前
不羡江中仙完成签到 ,获得积分10
3秒前
4秒前
4秒前
4秒前
小木匠完成签到,获得积分10
5秒前
潇洒一曲完成签到,获得积分10
5秒前
5秒前
所所应助LNN采纳,获得10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
jin发布了新的文献求助10
7秒前
思源应助贪玩的曲奇采纳,获得10
8秒前
文静青梦完成签到,获得积分10
8秒前
李爱国应助小初采纳,获得10
9秒前
轻松板栗发布了新的文献求助10
10秒前
魔幻海豚发布了新的文献求助10
10秒前
星辰大海应助yxl采纳,获得10
10秒前
10秒前
xun寻发布了新的文献求助10
11秒前
guigui918完成签到,获得积分10
11秒前
晓晓发布了新的文献求助10
12秒前
酷酷涫完成签到 ,获得积分0
12秒前
12秒前
传奇3应助风趣的惜天采纳,获得10
12秒前
科研通AI5应助独特鸵鸟采纳,获得10
12秒前
上官若男应助ddddcccdd采纳,获得10
13秒前
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
爆米花应助ymx703114采纳,获得10
13秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476364
求助须知:如何正确求助?哪些是违规求助? 3068018
关于积分的说明 9106299
捐赠科研通 2759594
什么是DOI,文献DOI怎么找? 1514136
邀请新用户注册赠送积分活动 700071
科研通“疑难数据库(出版商)”最低求助积分说明 699284