Re-tear after arthroscopic rotator cuff tear surgery: risk analysis using machine learning

医学 肩袖 眼泪 接收机工作特性 外科 磁共振成像 放射科 内科学
作者
Issei Shinohara,Yutaka Mifune,Atsuyuki Inui,Hanako Nishimoto,Tomoya Yoshikawa,Tatsuo Kato,Takahiro Furukawa,Shuya Tanaka,Masaya Kusunose,Yuichi Hoshino,Takehiko Matsushita,Makoto Mitani,Ryosuke Kuroda
出处
期刊:Journal of Shoulder and Elbow Surgery [Elsevier]
卷期号:33 (4): 815-822 被引量:7
标识
DOI:10.1016/j.jse.2023.07.017
摘要

Background

Postoperative rotator cuff retear after arthroscopic rotator cuff repair (ARCR) is still a major problem. Various risk factors such as age, gender, and tear size have been reported. Recently, magnetic resonance imaging-based stump classification was reported as an index of rotator cuff fragility. Although stump type 3 is reported to have a high retear rate, there are few reports on the risk of postoperative retear based on this classification. Machine learning (ML), an artificial intelligence technique, allows for more flexible predictive models than conventional statistical methods and has been applied to predict clinical outcomes. In this study, we used ML to predict postoperative retear risk after ARCR.

Methods

The retrospective case-control study included 353 patients who underwent surgical treatment for complete rotator cuff tear using the suture-bridge technique. Patients who initially presented with retears and traumatic tears were excluded. In study participants, after the initial tear repair, rotator cuff retears were diagnosed by magnetic resonance imaging; Sugaya classification types IV and V were defined as re-tears. Age, gender, stump classification, tear size, Goutallier classification, presence of diabetes, and hyperlipidemia were used for ML parameters to predict the risk of retear. Using Python's Scikit-learn as an ML library, five different AI models (logistic regression, random forest, AdaBoost, CatBoost, LightGBM) were trained on the existing data, and the prediction models were applied to the test dataset. The performance of these ML models was measured by the area under the receiver operating characteristic curve. Additionally, key features affecting retear were evaluated.

Results

The area under the receiver operating characteristic curve for logistic regression was 0.78, random forest 0.82, AdaBoost 0.78, CatBoost 0.83, and LightGBM 0.87, respectively for each model. LightGBM showed the highest score. The important factors for model prediction were age, stump classification, and tear size.

Conclusions

The ML classifier model predicted retears after ARCR with high accuracy, and the AI model showed that the most important characteristics affecting retears were age and imaging findings, including stump classification. This model may be able to predict postoperative rotator cuff retears based on clinical features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴嘻嘻发布了新的文献求助10
刚刚
1秒前
orixero应助CRY采纳,获得10
2秒前
2秒前
ZXR完成签到 ,获得积分10
3秒前
3秒前
tsw发布了新的文献求助10
4秒前
5秒前
artyourtime发布了新的文献求助10
6秒前
lxy发布了新的文献求助10
7秒前
丘比特应助BunnyZ采纳,获得10
8秒前
漫漫完成签到 ,获得积分10
8秒前
8秒前
细细完成签到,获得积分10
9秒前
11秒前
12秒前
科研八戒完成签到,获得积分10
12秒前
科研通AI2S应助T淋巴细胞采纳,获得10
12秒前
14秒前
sukasuka发布了新的文献求助10
16秒前
lxy完成签到,获得积分10
17秒前
Sesenta1完成签到,获得积分10
17秒前
林毅坤完成签到,获得积分10
21秒前
科研通AI2S应助coco采纳,获得10
22秒前
22秒前
wanci应助可靠的安寒采纳,获得10
24秒前
doo完成签到,获得积分10
24秒前
Ava应助辛勤的涵梅采纳,获得10
24秒前
26秒前
Bruce发布了新的文献求助10
27秒前
29秒前
29秒前
封迎松发布了新的文献求助10
29秒前
botanist完成签到 ,获得积分10
31秒前
31秒前
33秒前
hsing发布了新的文献求助10
34秒前
二十九发布了新的文献求助20
35秒前
林毅坤发布了新的文献求助10
35秒前
relexer完成签到,获得积分10
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158115
求助须知:如何正确求助?哪些是违规求助? 2809457
关于积分的说明 7882079
捐赠科研通 2467936
什么是DOI,文献DOI怎么找? 1313819
科研通“疑难数据库(出版商)”最低求助积分说明 630538
版权声明 601943