亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Re-tear after arthroscopic rotator cuff tear surgery: risk analysis using machine learning

医学 肩袖 眼泪 接收机工作特性 外科 磁共振成像 放射科 内科学
作者
Issei Shinohara,Yutaka Mifune,Atsuyuki Inui,Hanako Nishimoto,Tomoya Yoshikawa,Tatsuo Kato,Takahiro Furukawa,Shuya Tanaka,Masaya Kusunose,Yuichi Hoshino,Takehiko Matsushita,Makoto Mitani,Ryosuke Kuroda
出处
期刊:Journal of Shoulder and Elbow Surgery [Elsevier]
卷期号:33 (4): 815-822 被引量:17
标识
DOI:10.1016/j.jse.2023.07.017
摘要

Background

Postoperative rotator cuff retear after arthroscopic rotator cuff repair (ARCR) is still a major problem. Various risk factors such as age, gender, and tear size have been reported. Recently, magnetic resonance imaging-based stump classification was reported as an index of rotator cuff fragility. Although stump type 3 is reported to have a high retear rate, there are few reports on the risk of postoperative retear based on this classification. Machine learning (ML), an artificial intelligence technique, allows for more flexible predictive models than conventional statistical methods and has been applied to predict clinical outcomes. In this study, we used ML to predict postoperative retear risk after ARCR.

Methods

The retrospective case-control study included 353 patients who underwent surgical treatment for complete rotator cuff tear using the suture-bridge technique. Patients who initially presented with retears and traumatic tears were excluded. In study participants, after the initial tear repair, rotator cuff retears were diagnosed by magnetic resonance imaging; Sugaya classification types IV and V were defined as re-tears. Age, gender, stump classification, tear size, Goutallier classification, presence of diabetes, and hyperlipidemia were used for ML parameters to predict the risk of retear. Using Python's Scikit-learn as an ML library, five different AI models (logistic regression, random forest, AdaBoost, CatBoost, LightGBM) were trained on the existing data, and the prediction models were applied to the test dataset. The performance of these ML models was measured by the area under the receiver operating characteristic curve. Additionally, key features affecting retear were evaluated.

Results

The area under the receiver operating characteristic curve for logistic regression was 0.78, random forest 0.82, AdaBoost 0.78, CatBoost 0.83, and LightGBM 0.87, respectively for each model. LightGBM showed the highest score. The important factors for model prediction were age, stump classification, and tear size.

Conclusions

The ML classifier model predicted retears after ARCR with high accuracy, and the AI model showed that the most important characteristics affecting retears were age and imaging findings, including stump classification. This model may be able to predict postoperative rotator cuff retears based on clinical features.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
邬美杰完成签到,获得积分10
3秒前
16秒前
23秒前
YNHN发布了新的文献求助10
23秒前
爆米花应助YNHN采纳,获得10
31秒前
wingmay完成签到,获得积分10
32秒前
nchudddd发布了新的文献求助20
33秒前
wingmay发布了新的文献求助10
39秒前
39秒前
朱朱子完成签到 ,获得积分10
48秒前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
天天快乐应助饭团不吃鱼采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
CodeCraft应助Ss采纳,获得10
1分钟前
2分钟前
2分钟前
落寞惮发布了新的文献求助10
2分钟前
2分钟前
Wone3完成签到 ,获得积分10
2分钟前
LZY完成签到,获得积分10
2分钟前
斯文的访烟完成签到,获得积分10
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
2分钟前
2分钟前
123完成签到,获得积分10
2分钟前
2分钟前
张安然发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Akim应助熊二采纳,获得10
2分钟前
研研研究不出完成签到 ,获得积分10
2分钟前
xixun完成签到 ,获得积分20
3分钟前
落寞惮完成签到,获得积分10
3分钟前
3分钟前
ceeray23应助科研通管家采纳,获得10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650903
求助须知:如何正确求助?哪些是违规求助? 4782013
关于积分的说明 15052718
捐赠科研通 4809666
什么是DOI,文献DOI怎么找? 2572478
邀请新用户注册赠送积分活动 1528514
关于科研通互助平台的介绍 1487478