AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware Transformers

点云 计算机科学 变压器 云计算 编码器 算法 人工智能 工程类 操作系统 电气工程 电压
作者
Xiaoying Yu,Yongming Rao,Ziyi Wang,Jiwen Lu,Jie Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2301.04545
摘要

In this paper, we present a new method that reformulates point cloud completion as a set-to-set translation problem and design a new model, called PoinTr, which adopts a Transformer encoder-decoder architecture for point cloud completion. By representing the point cloud as a set of unordered groups of points with position embeddings, we convert the input data to a sequence of point proxies and employ the Transformers for generation. To facilitate Transformers to better leverage the inductive bias about 3D geometric structures of point clouds, we further devise a geometry-aware block that models the local geometric relationships explicitly. The migration of Transformers enables our model to better learn structural knowledge and preserve detailed information for point cloud completion. Taking a step towards more complicated and diverse situations, we further propose AdaPoinTr by developing an adaptive query generation mechanism and designing a novel denoising task during completing a point cloud. Coupling these two techniques enables us to train the model efficiently and effectively: we reduce training time (by 15x or more) and improve completion performance (over 20%). We also show our method can be extended to the scene-level point cloud completion scenario by designing a new geometry-enhanced semantic scene completion framework. Extensive experiments on the existing and newly-proposed datasets demonstrate the effectiveness of our method, which attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI, surpassing other work by a large margin and establishing new state-of-the-arts on various benchmarks. Most notably, AdaPoinTr can achieve such promising performance with higher throughputs and fewer FLOPs compared with the previous best methods in practice. The code and datasets are available at https://github.com/yuxumin/PoinTr
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂发布了新的文献求助10
刚刚
刚刚
田鼠标发布了新的文献求助10
刚刚
刚刚
顾矜应助laj采纳,获得10
1秒前
1秒前
墨鱼烩饭完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
111关闭了111文献求助
2秒前
2秒前
科目三应助ZC采纳,获得10
2秒前
3秒前
思源应助LL采纳,获得10
3秒前
4秒前
自信大白菜真实的钥匙完成签到,获得积分10
4秒前
胡峪完成签到,获得积分10
4秒前
无情山水发布了新的文献求助10
4秒前
5秒前
ccherty发布了新的文献求助10
5秒前
5秒前
小feng完成签到,获得积分10
6秒前
6秒前
laoxiaozi发布了新的文献求助10
7秒前
高大绝义发布了新的文献求助10
7秒前
星星发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
papo完成签到,获得积分10
8秒前
8秒前
不懈奋进应助如果我沉默采纳,获得30
9秒前
小马甲应助懵懂采纳,获得10
9秒前
9秒前
CipherSage应助快乐保温杯采纳,获得10
9秒前
小梦发布了新的文献求助10
9秒前
zzlark发布了新的文献求助10
10秒前
11秒前
A拉拉拉发布了新的文献求助10
11秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079871
求助须知:如何正确求助?哪些是违规求助? 2732588
关于积分的说明 7524713
捐赠科研通 2381420
什么是DOI,文献DOI怎么找? 1262876
科研通“疑难数据库(出版商)”最低求助积分说明 612123
版权声明 597460