AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware Transformers

点云 计算机科学 变压器 云计算 编码器 算法 理论计算机科学 人工智能 工程类 操作系统 电气工程 电压
作者
Xumin Yu,Yongming Rao,Ziyi Wang,Jiwen Lu,Jie Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2301.04545
摘要

In this paper, we present a new method that reformulates point cloud completion as a set-to-set translation problem and design a new model, called PoinTr, which adopts a Transformer encoder-decoder architecture for point cloud completion. By representing the point cloud as a set of unordered groups of points with position embeddings, we convert the input data to a sequence of point proxies and employ the Transformers for generation. To facilitate Transformers to better leverage the inductive bias about 3D geometric structures of point clouds, we further devise a geometry-aware block that models the local geometric relationships explicitly. The migration of Transformers enables our model to better learn structural knowledge and preserve detailed information for point cloud completion. Taking a step towards more complicated and diverse situations, we further propose AdaPoinTr by developing an adaptive query generation mechanism and designing a novel denoising task during completing a point cloud. Coupling these two techniques enables us to train the model efficiently and effectively: we reduce training time (by 15x or more) and improve completion performance (over 20%). We also show our method can be extended to the scene-level point cloud completion scenario by designing a new geometry-enhanced semantic scene completion framework. Extensive experiments on the existing and newly-proposed datasets demonstrate the effectiveness of our method, which attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI, surpassing other work by a large margin and establishing new state-of-the-arts on various benchmarks. Most notably, AdaPoinTr can achieve such promising performance with higher throughputs and fewer FLOPs compared with the previous best methods in practice. The code and datasets are available at https://github.com/yuxumin/PoinTr
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助sunzhiyu233采纳,获得10
刚刚
刚刚
刚刚
sss发布了新的文献求助20
1秒前
氨基酸发布了新的文献求助30
2秒前
2秒前
2秒前
白菜发布了新的文献求助10
2秒前
文献查找完成签到,获得积分10
3秒前
浅色墨水完成签到,获得积分10
3秒前
研友_VZG7GZ应助xxx采纳,获得10
3秒前
夙杨完成签到,获得积分10
4秒前
yKkkkkk完成签到,获得积分10
4秒前
烂漫驳完成签到,获得积分10
4秒前
JunJun完成签到 ,获得积分10
4秒前
4秒前
喜悦中道应助jie采纳,获得10
4秒前
pursuingx完成签到,获得积分10
5秒前
结实灵完成签到,获得积分10
5秒前
机灵猕猴桃完成签到,获得积分10
5秒前
标致小伙发布了新的文献求助30
6秒前
7秒前
7秒前
7秒前
烂漫驳发布了新的文献求助10
7秒前
三侠完成签到,获得积分10
7秒前
orixero应助迷人圣诞树很闲采纳,获得10
8秒前
8秒前
学渣向下发布了新的文献求助10
8秒前
9秒前
专注乐巧完成签到,获得积分20
9秒前
天天快乐应助闪闪的摩托采纳,获得10
9秒前
BreezyGallery发布了新的文献求助10
9秒前
sss完成签到,获得积分10
9秒前
壮观寄文完成签到 ,获得积分10
9秒前
zhangkaixin完成签到,获得积分10
9秒前
10秒前
1111完成签到,获得积分10
11秒前
11秒前
swsx1317发布了新的文献求助10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759