已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

AdaPoinTr: Diverse Point Cloud Completion with Adaptive Geometry-Aware Transformers

点云 计算机科学 变压器 云计算 编码器 算法 理论计算机科学 人工智能 工程类 操作系统 电气工程 电压
作者
Xumin Yu,Yongming Rao,Ziyi Wang,Jiwen Lu,Jie Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2301.04545
摘要

In this paper, we present a new method that reformulates point cloud completion as a set-to-set translation problem and design a new model, called PoinTr, which adopts a Transformer encoder-decoder architecture for point cloud completion. By representing the point cloud as a set of unordered groups of points with position embeddings, we convert the input data to a sequence of point proxies and employ the Transformers for generation. To facilitate Transformers to better leverage the inductive bias about 3D geometric structures of point clouds, we further devise a geometry-aware block that models the local geometric relationships explicitly. The migration of Transformers enables our model to better learn structural knowledge and preserve detailed information for point cloud completion. Taking a step towards more complicated and diverse situations, we further propose AdaPoinTr by developing an adaptive query generation mechanism and designing a novel denoising task during completing a point cloud. Coupling these two techniques enables us to train the model efficiently and effectively: we reduce training time (by 15x or more) and improve completion performance (over 20%). We also show our method can be extended to the scene-level point cloud completion scenario by designing a new geometry-enhanced semantic scene completion framework. Extensive experiments on the existing and newly-proposed datasets demonstrate the effectiveness of our method, which attains 6.53 CD on PCN, 0.81 CD on ShapeNet-55 and 0.392 MMD on real-world KITTI, surpassing other work by a large margin and establishing new state-of-the-arts on various benchmarks. Most notably, AdaPoinTr can achieve such promising performance with higher throughputs and fewer FLOPs compared with the previous best methods in practice. The code and datasets are available at https://github.com/yuxumin/PoinTr
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轩轩完成签到,获得积分10
1秒前
长白完成签到,获得积分10
1秒前
1秒前
缓慢冬天发布了新的文献求助10
2秒前
yun给yun的求助进行了留言
4秒前
shinn发布了新的文献求助10
4秒前
成就的孤晴完成签到 ,获得积分10
4秒前
clhoxvpze发布了新的文献求助10
7秒前
8秒前
Arui发布了新的文献求助10
9秒前
跳跃楼房完成签到 ,获得积分10
10秒前
11秒前
you发布了新的文献求助10
13秒前
13秒前
李健应助LMR采纳,获得20
15秒前
陈广辉发布了新的文献求助10
16秒前
六金发布了新的文献求助10
19秒前
shinn发布了新的文献求助10
21秒前
xiao完成签到 ,获得积分10
26秒前
秋殤完成签到 ,获得积分10
28秒前
28秒前
29秒前
六金完成签到,获得积分10
29秒前
Orange应助fduqyy采纳,获得10
30秒前
putao完成签到,获得积分10
31秒前
32秒前
秋殤关注了科研通微信公众号
32秒前
shinn发布了新的文献求助10
33秒前
34秒前
CABBAGE完成签到,获得积分10
36秒前
hyhyhyhy发布了新的文献求助10
38秒前
39秒前
yun发布了新的文献求助100
39秒前
39秒前
xiaxiao应助lyf采纳,获得200
40秒前
传奇3应助Arui采纳,获得10
41秒前
梨子完成签到,获得积分10
43秒前
谈伟发布了新的文献求助10
44秒前
桐桐应助谢昱采纳,获得10
44秒前
秋分发布了新的文献求助10
44秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980465
求助须知:如何正确求助?哪些是违规求助? 3524436
关于积分的说明 11221420
捐赠科研通 3261850
什么是DOI,文献DOI怎么找? 1800921
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283