Robust extraction of pneumonia-associated clinical states from electronic health records

不可用 计算机科学 聚类分析 人工智能 数据挖掘 机器学习 医学 健康档案 医疗保健 统计 数学 经济 经济增长
作者
Feihong Xu,Félix Leonardo Morales,Luı́s A. Nunes Amaral
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (45)
标识
DOI:10.1073/pnas.2417688121
摘要

Mining of electronic health records (EHR) promises to automate the identification of comprehensive disease phenotypes. However, the realization of this promise is hindered by the unavailability of generalizable ground-truth information, data incompleteness and heterogeneity, and the lack of generalization to multiple cohorts. We present here a data-driven approach to identify clinical states that we implement for 585 critical care patients with suspected pneumonia recruited by the SCRIPT study, which we compare to and integrate with 9,918 pneumonia patients from the MIMIC-IV dataset. We extract and curate from their structured EHRs a primary set of clinical features (53 and 59 features for SCRIPT and MIMIC-IV, respectively), including disease severity scores, vital signs, and so on, at various degrees of completeness. We aggregate irregular time series into daily frequency, resulting in 12,495 and 94,684 patient-day pairs for SCRIPT and MIMIC, respectively. We define a “common-sense” ground truth that we then use in a semisupervised pipeline to optimize choices for data preprocessing, and reduce the feature space to four principal components. We describe and validate an ensemble-based clustering method that enables us to robustly identify five clinical states, and use a Gaussian mixture model to quantify uncertainty in cluster assignment. Demonstrating the clinical relevance of the identified states, we find that three states are strongly associated with disease outcomes (dying vs. recovering), while the other two reflect disease etiology. The outcome associated clinical states provide significantly increased discrimination of mortality rates over standard approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
欣喜的书芹完成签到 ,获得积分10
4秒前
黎某完成签到,获得积分10
7秒前
微毒麻醉发布了新的文献求助10
7秒前
图图完成签到,获得积分10
8秒前
8秒前
Ava应助研友_Ze2vV8采纳,获得10
11秒前
11秒前
12秒前
倪l完成签到,获得积分10
13秒前
liu发布了新的文献求助10
15秒前
和和和完成签到,获得积分10
17秒前
18秒前
充电宝应助科研通管家采纳,获得10
20秒前
香蕉觅云应助科研通管家采纳,获得10
20秒前
NICAI应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
嘿嘿应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
慕青应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
21秒前
21秒前
哈哈发布了新的文献求助10
22秒前
JamesPei应助研友_Ze2vV8采纳,获得10
22秒前
英姑应助怕黑傲珊采纳,获得10
23秒前
29秒前
oi发布了新的文献求助10
29秒前
共享精神应助研友_Ze2vV8采纳,获得10
33秒前
微毒麻醉完成签到,获得积分10
33秒前
果果完成签到,获得积分10
35秒前
35秒前
是真灵还是机灵完成签到 ,获得积分10
36秒前
Tabby完成签到,获得积分10
37秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741468
求助须知:如何正确求助?哪些是违规求助? 3284100
关于积分的说明 10038512
捐赠科研通 3000962
什么是DOI,文献DOI怎么找? 1646907
邀请新用户注册赠送积分活动 783919
科研通“疑难数据库(出版商)”最低求助积分说明 750478