Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift

校准 背景(考古学) 系列(地层学) 计算机科学 时间序列 计量经济学 数据挖掘 人工智能 机器学习 统计 数学 地理 古生物学 考古 生物
作者
Mouxiang Chen,Lefei Shen,Fu Han,Zhuo Li,Jianling Sun,Chenghao Liu
标识
DOI:10.1145/3637528.3671926
摘要

Recent years have witnessed the success of introducing deep learning models to time series forecasting. From a data generation perspective, we illustrate that existing models are susceptible to distribution shifts driven by temporal contexts, whether observed or unobserved. Such context-driven distribution shift (CDS) introduces biases in predictions within specific contexts and poses challenges for conventional training paradigms. In this paper, we introduce a universal calibration methodology for the detection and adaptation of CDS with a trained model. To this end, we propose a novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", which quantifies the model's vulnerability to CDS by evaluating the mutual information between prediction residuals and their corresponding contexts. A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation. In this circumstance, we put forth a straightforward yet potent adapter framework for model calibration, termed the "sample-level contextualized adapter" or "SOLID". This framework involves the curation of a contextually similar dataset to the provided test sample and the subsequent fine-tuning of the model's prediction layer with a limited number of steps. Our theoretical analysis demonstrates that this adaptation strategy can achieve an optimal bias-variance trade-off. Notably, our proposed Reconditionor and SOLID are model-agnostic and readily adaptable to a wide range of models. Extensive experiments show that SOLID consistently enhances the performance of current forecasting models on real-world datasets, especially on cases with substantial CDS detected by the proposed Reconditionor, thus validating the effectiveness of the calibration approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助陶醉觅夏采纳,获得200
3秒前
憨鬼憨切发布了新的文献求助10
3秒前
3秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
5秒前
6秒前
7秒前
hh应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
Ava应助科研通管家采纳,获得10
7秒前
Eva完成签到,获得积分10
7秒前
传奇3应助科研通管家采纳,获得10
7秒前
斯文败类应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得10
8秒前
思源应助科研通管家采纳,获得10
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
清爽老九应助科研通管家采纳,获得20
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
greenPASS666发布了新的文献求助10
8秒前
涂欣桐应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
secbox完成签到,获得积分10
9秒前
刘哈哈发布了新的文献求助30
9秒前
xyzdmmm完成签到,获得积分10
10秒前
10秒前
欢呼冰岚发布了新的文献求助30
11秒前
xiongdi521发布了新的文献求助10
11秒前
honeybee完成签到,获得积分10
13秒前
兔子完成签到,获得积分10
14秒前
汉关发布了新的文献求助10
14秒前
NexusExplorer应助WZ0904采纳,获得10
15秒前
xiongdi521完成签到,获得积分10
16秒前
16秒前
ding应助奋斗的小林采纳,获得10
16秒前
超帅曼柔完成签到,获得积分10
16秒前
酷波er应助xg采纳,获得10
17秒前
听话的亦瑶完成签到,获得积分10
18秒前
龙江游侠完成签到,获得积分10
18秒前
小蘑菇应助honeybee采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849