Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift

校准 背景(考古学) 系列(地层学) 计算机科学 时间序列 计量经济学 数据挖掘 人工智能 机器学习 统计 数学 地理 古生物学 考古 生物
作者
Mouxiang Chen,Lefei Shen,Fu Han,Zhuo Li,Jianling Sun,Chenghao Liu
标识
DOI:10.1145/3637528.3671926
摘要

Recent years have witnessed the success of introducing deep learning models to time series forecasting. From a data generation perspective, we illustrate that existing models are susceptible to distribution shifts driven by temporal contexts, whether observed or unobserved. Such context-driven distribution shift (CDS) introduces biases in predictions within specific contexts and poses challenges for conventional training paradigms. In this paper, we introduce a universal calibration methodology for the detection and adaptation of CDS with a trained model. To this end, we propose a novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", which quantifies the model's vulnerability to CDS by evaluating the mutual information between prediction residuals and their corresponding contexts. A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation. In this circumstance, we put forth a straightforward yet potent adapter framework for model calibration, termed the "sample-level contextualized adapter" or "SOLID". This framework involves the curation of a contextually similar dataset to the provided test sample and the subsequent fine-tuning of the model's prediction layer with a limited number of steps. Our theoretical analysis demonstrates that this adaptation strategy can achieve an optimal bias-variance trade-off. Notably, our proposed Reconditionor and SOLID are model-agnostic and readily adaptable to a wide range of models. Extensive experiments show that SOLID consistently enhances the performance of current forecasting models on real-world datasets, especially on cases with substantial CDS detected by the proposed Reconditionor, thus validating the effectiveness of the calibration approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王完成签到,获得积分10
3秒前
3秒前
潇潇雨歇发布了新的文献求助20
4秒前
Gauss完成签到,获得积分0
5秒前
Isaac完成签到 ,获得积分10
5秒前
5秒前
斯文败类应助久违采纳,获得10
6秒前
蝉鸣完成签到,获得积分10
7秒前
Kiling发布了新的文献求助10
8秒前
12秒前
威武的翠安完成签到 ,获得积分10
14秒前
14秒前
光热效应发布了新的文献求助10
17秒前
愤怒的豌豆完成签到,获得积分10
19秒前
Kiling完成签到,获得积分10
19秒前
28秒前
潇潇雨歇发布了新的文献求助20
29秒前
29秒前
杰桑的西地那非完成签到 ,获得积分10
29秒前
打打应助nn采纳,获得10
30秒前
马66完成签到 ,获得积分10
31秒前
非要叫我起个昵称完成签到,获得积分10
32秒前
34秒前
guangwow完成签到,获得积分10
34秒前
光热效应完成签到,获得积分20
36秒前
田様应助科研通管家采纳,获得10
38秒前
38秒前
Hello应助科研通管家采纳,获得10
38秒前
烟花应助科研通管家采纳,获得10
38秒前
将将将应助科研通管家采纳,获得20
38秒前
38秒前
38秒前
完美世界应助科研通管家采纳,获得10
38秒前
N型半导体发布了新的文献求助10
39秒前
可爱的函函应助cat采纳,获得50
39秒前
西柚完成签到,获得积分10
39秒前
gy关闭了gy文献求助
40秒前
yx_cheng应助69采纳,获得30
40秒前
饺子完成签到,获得积分10
41秒前
YQF完成签到,获得积分10
42秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966285
求助须知:如何正确求助?哪些是违规求助? 3511697
关于积分的说明 11159270
捐赠科研通 3246284
什么是DOI,文献DOI怎么找? 1793339
邀请新用户注册赠送积分活动 874354
科研通“疑难数据库(出版商)”最低求助积分说明 804351