亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift

校准 背景(考古学) 系列(地层学) 计算机科学 时间序列 计量经济学 数据挖掘 人工智能 机器学习 统计 数学 地理 生物 古生物学 考古
作者
Mouxiang Chen,Lefei Shen,Fu Han,Zhuo Li,Jianling Sun,Chenghao Liu
标识
DOI:10.1145/3637528.3671926
摘要

Recent years have witnessed the success of introducing deep learning models to time series forecasting. From a data generation perspective, we illustrate that existing models are susceptible to distribution shifts driven by temporal contexts, whether observed or unobserved. Such context-driven distribution shift (CDS) introduces biases in predictions within specific contexts and poses challenges for conventional training paradigms. In this paper, we introduce a universal calibration methodology for the detection and adaptation of CDS with a trained model. To this end, we propose a novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", which quantifies the model's vulnerability to CDS by evaluating the mutual information between prediction residuals and their corresponding contexts. A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation. In this circumstance, we put forth a straightforward yet potent adapter framework for model calibration, termed the "sample-level contextualized adapter" or "SOLID". This framework involves the curation of a contextually similar dataset to the provided test sample and the subsequent fine-tuning of the model's prediction layer with a limited number of steps. Our theoretical analysis demonstrates that this adaptation strategy can achieve an optimal bias-variance trade-off. Notably, our proposed Reconditionor and SOLID are model-agnostic and readily adaptable to a wide range of models. Extensive experiments show that SOLID consistently enhances the performance of current forecasting models on real-world datasets, especially on cases with substantial CDS detected by the proposed Reconditionor, thus validating the effectiveness of the calibration approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
柳贯一发布了新的文献求助100
1秒前
4秒前
叶千山完成签到 ,获得积分10
5秒前
8秒前
8秒前
11122发布了新的文献求助10
8秒前
8秒前
婉莹完成签到 ,获得积分0
12秒前
温暖水云发布了新的文献求助10
13秒前
13秒前
16秒前
11122发布了新的文献求助10
18秒前
Kristopher完成签到 ,获得积分10
19秒前
情怀应助王佳俊采纳,获得10
20秒前
20秒前
汉堡包应助tdtk采纳,获得10
24秒前
Cast_Lappland发布了新的文献求助10
26秒前
30秒前
31秒前
王佳俊发布了新的文献求助10
35秒前
hankongli完成签到 ,获得积分10
35秒前
36秒前
沐阳完成签到 ,获得积分10
45秒前
王佳俊完成签到,获得积分10
48秒前
52秒前
53秒前
壹玖一陆完成签到,获得积分20
55秒前
55秒前
57秒前
豆都发布了新的文献求助10
57秒前
耳东陈完成签到 ,获得积分10
58秒前
壹玖一陆发布了新的文献求助10
59秒前
科研通AI6应助壹玖一陆采纳,获得10
1分钟前
1分钟前
我是老大应助wuzihao采纳,获得10
1分钟前
max完成签到,获得积分10
1分钟前
1分钟前
1分钟前
CodeCraft应助传统的书包采纳,获得30
1分钟前
Evaporate发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490