Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift

校准 背景(考古学) 系列(地层学) 计算机科学 时间序列 计量经济学 数据挖掘 人工智能 机器学习 统计 数学 地理 生物 古生物学 考古
作者
Mouxiang Chen,Lefei Shen,Fu Han,Zhuo Li,Jianling Sun,Chenghao Liu
标识
DOI:10.1145/3637528.3671926
摘要

Recent years have witnessed the success of introducing deep learning models to time series forecasting. From a data generation perspective, we illustrate that existing models are susceptible to distribution shifts driven by temporal contexts, whether observed or unobserved. Such context-driven distribution shift (CDS) introduces biases in predictions within specific contexts and poses challenges for conventional training paradigms. In this paper, we introduce a universal calibration methodology for the detection and adaptation of CDS with a trained model. To this end, we propose a novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", which quantifies the model's vulnerability to CDS by evaluating the mutual information between prediction residuals and their corresponding contexts. A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation. In this circumstance, we put forth a straightforward yet potent adapter framework for model calibration, termed the "sample-level contextualized adapter" or "SOLID". This framework involves the curation of a contextually similar dataset to the provided test sample and the subsequent fine-tuning of the model's prediction layer with a limited number of steps. Our theoretical analysis demonstrates that this adaptation strategy can achieve an optimal bias-variance trade-off. Notably, our proposed Reconditionor and SOLID are model-agnostic and readily adaptable to a wide range of models. Extensive experiments show that SOLID consistently enhances the performance of current forecasting models on real-world datasets, especially on cases with substantial CDS detected by the proposed Reconditionor, thus validating the effectiveness of the calibration approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
在水一方应助爱吃马铃薯采纳,获得10
3秒前
4秒前
酷波er应助夹心采纳,获得10
4秒前
4秒前
4秒前
Akim应助称心的依琴采纳,获得10
5秒前
5秒前
您疼肚发布了新的文献求助10
5秒前
Jiangtao应助科研狗采纳,获得10
6秒前
6秒前
传奇3应助高须杨采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
开心的自行车完成签到,获得积分10
8秒前
自由思枫发布了新的文献求助10
9秒前
Susie完成签到,获得积分10
9秒前
A29964095发布了新的文献求助10
10秒前
海绵宝宝发布了新的文献求助10
10秒前
10秒前
Yang完成签到,获得积分10
10秒前
Jasper应助pingyuxuan采纳,获得10
11秒前
C1stues完成签到,获得积分10
11秒前
Owen应助橘子采纳,获得10
12秒前
异乡人完成签到,获得积分10
12秒前
12秒前
菜花发布了新的文献求助10
13秒前
栖迟发布了新的文献求助10
13秒前
高须杨完成签到,获得积分10
13秒前
123123发布了新的文献求助10
14秒前
14秒前
QDU完成签到,获得积分10
14秒前
江望雪完成签到,获得积分10
14秒前
chongyue完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
18秒前
茅咖喱完成签到,获得积分20
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5511824
求助须知:如何正确求助?哪些是违规求助? 4606286
关于积分的说明 14499033
捐赠科研通 4541686
什么是DOI,文献DOI怎么找? 2488598
邀请新用户注册赠送积分活动 1470681
关于科研通互助平台的介绍 1443002