亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calibration of Time-Series Forecasting: Detecting and Adapting Context-Driven Distribution Shift

校准 背景(考古学) 系列(地层学) 计算机科学 时间序列 计量经济学 数据挖掘 人工智能 机器学习 统计 数学 地理 古生物学 考古 生物
作者
Mouxiang Chen,Lefei Shen,Fu Han,Zhuo Li,Jianling Sun,Chenghao Liu
标识
DOI:10.1145/3637528.3671926
摘要

Recent years have witnessed the success of introducing deep learning models to time series forecasting. From a data generation perspective, we illustrate that existing models are susceptible to distribution shifts driven by temporal contexts, whether observed or unobserved. Such context-driven distribution shift (CDS) introduces biases in predictions within specific contexts and poses challenges for conventional training paradigms. In this paper, we introduce a universal calibration methodology for the detection and adaptation of CDS with a trained model. To this end, we propose a novel CDS detector, termed the "residual-based CDS detector" or "Reconditionor", which quantifies the model's vulnerability to CDS by evaluating the mutual information between prediction residuals and their corresponding contexts. A high Reconditionor score indicates a severe susceptibility, thereby necessitating model adaptation. In this circumstance, we put forth a straightforward yet potent adapter framework for model calibration, termed the "sample-level contextualized adapter" or "SOLID". This framework involves the curation of a contextually similar dataset to the provided test sample and the subsequent fine-tuning of the model's prediction layer with a limited number of steps. Our theoretical analysis demonstrates that this adaptation strategy can achieve an optimal bias-variance trade-off. Notably, our proposed Reconditionor and SOLID are model-agnostic and readily adaptable to a wide range of models. Extensive experiments show that SOLID consistently enhances the performance of current forecasting models on real-world datasets, especially on cases with substantial CDS detected by the proposed Reconditionor, thus validating the effectiveness of the calibration approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
种下梧桐树完成签到 ,获得积分10
17秒前
小橘子吃傻子完成签到,获得积分10
24秒前
科研通AI2S应助倪妮采纳,获得10
45秒前
传奇3应助倪妮采纳,获得50
45秒前
昏睡的丸子完成签到,获得积分10
55秒前
1分钟前
orixero应助盼盼采纳,获得10
1分钟前
1分钟前
HMYX完成签到 ,获得积分10
1分钟前
1分钟前
qft发布了新的文献求助10
1分钟前
1分钟前
倪妮发布了新的文献求助50
1分钟前
Ava应助不安的靖柔采纳,获得30
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
ymr发布了新的文献求助10
2分钟前
ymr发布了新的文献求助10
2分钟前
ymr发布了新的文献求助10
2分钟前
起风了完成签到 ,获得积分10
2分钟前
ymr发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
SciGPT应助糖糖的冰镇啤酒采纳,获得10
2分钟前
不安的靖柔完成签到,获得积分10
2分钟前
lzd发布了新的文献求助10
3分钟前
Jasper应助yeyeye采纳,获得10
3分钟前
3分钟前
柒柒发布了新的文献求助30
3分钟前
lzd完成签到,获得积分10
3分钟前
3分钟前
轻松的采柳完成签到 ,获得积分10
3分钟前
虚拟的清炎完成签到 ,获得积分10
3分钟前
yeyeye发布了新的文献求助10
3分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104795
求助须知:如何正确求助?哪些是违规求助? 4314873
关于积分的说明 13443807
捐赠科研通 4143302
什么是DOI,文献DOI怎么找? 2270281
邀请新用户注册赠送积分活动 1272797
关于科研通互助平台的介绍 1209743