已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Flow reconstruction with uncertainty quantification from noisy measurements based on Bayesian physics-informed neural networks

物理 贝叶斯概率 统计物理学 人工神经网络 不确定度量化 贝叶斯推理 流量(数学) 机器学习 人工智能 机械 计算机科学
作者
Hailong Liu,Zhi Hu Wang,Rui Deng,Shipeng Wang,Xuhui Meng,Chao Xu,Shengze Cai
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (11) 被引量:1
标识
DOI:10.1063/5.0231684
摘要

Flow reconstruction based on limited measurement data, which can be considered as a state estimation problem, constitutes a fundamental task within the realm of fluid mechanics. In recent years, the physics-informed neural networks (PINNs) have been proposed to achieve flow field reconstruction by integrating the measurements with governing equations during network training. However, the performance is compromised by the presence of high-level data noise, and the uncertainty of the reconstructed flow fields remains unattainable. In this paper, we first perform a systematic study to investigate the impact of data noise on the reconstruction result of PINNs. Subsequently, we present strategies of early stopping and loss regularization, which can suppress the overfitting issue to some extent. Ensemble learning is also employed to quantify the uncertainty of the results from vanilla PINNs. In addition, we propose to use a Bayesian framework of PINNs (BPINNs) for flow field reconstruction, which incorporates the Bayesian neural network with PINNs. It is demonstrated that BPINNs are capable of reconstructing the velocity and pressure fields from sparse and noisy velocity measurements, while providing comprehensive uncertainty quantification of the flow fields simultaneously. Compared to the vanilla PINNs, BPINNs are more accurate and robust when there is a high level of data noise. We conduct experiments on two-dimensional cavity flow and the flow past a cylinder to validate the effectiveness of the proposed methods throughout the paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
鲤鱼初柳完成签到 ,获得积分10
3秒前
KXC发布了新的文献求助10
5秒前
6秒前
6秒前
完美世界应助ykx采纳,获得10
8秒前
9秒前
9秒前
可爱的函函应助己凡采纳,获得10
9秒前
西西完成签到,获得积分10
10秒前
不安的裘完成签到 ,获得积分10
11秒前
西红柿不吃皮完成签到 ,获得积分10
12秒前
瓦斯完成签到,获得积分20
13秒前
aguo完成签到 ,获得积分10
15秒前
加减乘除发布了新的文献求助10
16秒前
贪玩的半仙完成签到,获得积分10
17秒前
大模型应助小小怪将军采纳,获得10
21秒前
24秒前
打打应助。。采纳,获得10
24秒前
enli完成签到,获得积分10
27秒前
小曹硕士发布了新的文献求助10
29秒前
29秒前
30秒前
Snow完成签到 ,获得积分10
31秒前
Gyz发布了新的文献求助10
33秒前
SciGPT应助KXC采纳,获得10
36秒前
xiaomeng完成签到 ,获得积分10
38秒前
41秒前
左左完成签到 ,获得积分10
41秒前
孙文杰完成签到 ,获得积分10
44秒前
Ava应助余姚采纳,获得10
47秒前
51秒前
53秒前
Lucas应助teng采纳,获得10
53秒前
等待羽毛发布了新的文献求助10
55秒前
脑洞疼应助木猫采纳,获得10
55秒前
汉堡包应助huhu采纳,获得10
55秒前
56秒前
科研通AI2S应助科研通管家采纳,获得10
57秒前
57秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268449
求助须知:如何正确求助?哪些是违规求助? 2907972
关于积分的说明 8344010
捐赠科研通 2578270
什么是DOI,文献DOI怎么找? 1401930
科研通“疑难数据库(出版商)”最低求助积分说明 655240
邀请新用户注册赠送积分活动 634355