自愈水凝胶
催化作用
阳离子聚合
光敏剂
化学
脱氢丙氨酸
乙二醇
光化学
高分子化学
化学工程
有机化学
氨基酸
工程类
生物化学
作者
Tolga Çeper,Marcel Langer,Nikita Vashistha,Benjamin Dietzek,Carsten Streb,Sven Rau,Felix H. Schacher
标识
DOI:10.1002/marc.202300448
摘要
Abstract Soft matter integration of photosensitizers and catalysts provides promising solutions to developing sustainable materials for energy conversion. Particularly, hydrogels bring unique benefits, such as spatial control and 3D‐accessibility of molecular units, as well as recyclability. Herein, the preparation of polyampholyte hydrogels based on poly(dehydroalanine) (PDha) is reported. Chemically crosslinked PDha with bis‐epoxy poly(ethylene glycol) leads to a transparent, self‐supporting hydrogel. Due to the ionizable groups on PDha, this 3D polymeric matrix can be anionic, cationic, or zwitterionic depending on the pH value, and its high density of dynamic charges has a potential for electrostatic attachment of charged molecules. The integration of the cationic molecular photosensitizer [Ru(bpy) 3 ] 2+ (bpy = 2,2′‐bipyridine) is realized, which is a reversible process controlled by pH, leading to light harvesting hydrogels. They are further combined with either a thiomolybdate catalyst ([Mo 3 S 13 ] 2− ) for hydrogen evolution reaction (HER) or a cobalt polyoxometalate catalyst (Co 4 POM = [Co 4 (H 2 O) 2 (PW 9 O 34 ) 2 ] 10− ) for oxygen evolution reaction (OER). Under the optimized condition, the resulting hydrogels show catalytic activity in both cases upon visible light irradiation. In the case of OER, higher photosensitizer stability is observed compared to homogeneous systems, as the polymer environment seems to influence decomposition pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI