SPIN-CGNN: Improved fixed backbone protein design with contact map-based graph construction and contact graph neural network

计算机科学 人工智能 图形 深度学习 卷积神经网络 人工神经网络 蛋白质结构预测 困惑 模式识别(心理学) 理论计算机科学 算法 蛋白质结构 语言模型 生物 生物化学
作者
Xing Zhang,Yin Hong-mei,Fei Ling,Jian Zhan,Yaoqi Zhou
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:19 (12): e1011330-e1011330 被引量:4
标识
DOI:10.1371/journal.pcbi.1011330
摘要

Recent advances in deep learning have significantly improved the ability to infer protein sequences directly from protein structures for the fix-backbone design. The methods have evolved from the early use of multi-layer perceptrons to convolutional neural networks, transformers, and graph neural networks (GNN). However, the conventional approach of constructing K-nearest-neighbors (KNN) graph for GNN has limited the utilization of edge information, which plays a critical role in network performance. Here we introduced SPIN-CGNN based on protein contact maps for nearest neighbors. Together with auxiliary edge updates and selective kernels, we found that SPIN-CGNN provided a comparable performance in refolding ability by AlphaFold2 to the current state-of-the-art techniques but a significant improvement over them in term of sequence recovery, perplexity, deviation from amino-acid compositions of native sequences, conservation of hydrophobic positions, and low complexity regions, according to the test by unseen structures, “hallucinated” structures and diffusion models. Results suggest that low complexity regions in the sequences designed by deep learning, for generated structures in particular, remain to be improved, when compared to the native sequences.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
鑫博完成签到 ,获得积分10
1秒前
1秒前
Li完成签到,获得积分10
1秒前
Lucas应助孙朱珠采纳,获得10
2秒前
qcy72完成签到,获得积分10
2秒前
Tangviva1988发布了新的文献求助10
2秒前
2秒前
3秒前
99发布了新的文献求助10
3秒前
梁jj完成签到,获得积分10
3秒前
852应助小短腿飞行员采纳,获得10
4秒前
彭于晏应助漾漾采纳,获得10
5秒前
Nancy发布了新的文献求助10
5秒前
5秒前
jianyulv应助司空博涛采纳,获得10
5秒前
魏lin发布了新的文献求助10
6秒前
掠影发布了新的文献求助10
6秒前
6秒前
星辰大海应助liushu采纳,获得10
6秒前
Stella应助zjmm采纳,获得10
6秒前
6秒前
汉堡包应助婧婧婧采纳,获得10
7秒前
7秒前
彭于晏应助59采纳,获得10
7秒前
buno发布了新的文献求助30
7秒前
搜集达人应助专注的芷蕾采纳,获得10
8秒前
8秒前
Stella应助阔达的双双采纳,获得10
8秒前
8秒前
8秒前
8秒前
无极微光应助科研通管家采纳,获得20
8秒前
一叶知秋应助科研通管家采纳,获得10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
9秒前
大个应助科研通管家采纳,获得10
9秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588167
求助须知:如何正确求助?哪些是违规求助? 4671269
关于积分的说明 14786547
捐赠科研通 4624667
什么是DOI,文献DOI怎么找? 2531667
邀请新用户注册赠送积分活动 1500268
关于科研通互助平台的介绍 1468240