亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards Generalist Biomedical AI

通才与专种 医学教育 医学 生物 生态学 栖息地
作者
Tao Tu,Shekoofeh Azizi,Danny Driess,Mike Schaekermann,Mohamed Amin,Pi-Chuan Chang,Andrew Carroll,Charles T. Lau,Ryutaro Tanno,Sofia Ira Ktena,Anil Palepu,Basil Mustafa,Aakanksha Chowdhery,Yun Liu,Simon Kornblith,David J. Fleet,P. Mansfield,Sushant Prakash,Renee Wong,Sunny Virmani
标识
DOI:10.1056/aioa2300138
摘要

BackgroundMedicine is inherently multimodal, requiring the simultaneous interpretation and integration of insights between many data modalities spanning text, imaging, genomics, and more. Generalist biomedical artificial intelligence systems that flexibly encode, integrate, and interpret these data might better enable impactful applications ranging from scientific discovery to care delivery.MethodsTo catalyze development of these models, we curated MultiMedBench, a new multimodal biomedical benchmark. MultiMedBench encompasses 14 diverse tasks, such as medical question answering, mammography and dermatology image interpretation, radiology report generation and summarization, and genomic variant calling. We then introduced Med-PaLM Multimodal (Med-PaLM M), our proof of concept for a generalist biomedical AI system that flexibly encodes and interprets biomedical data including clinical language, imaging, and genomics with the same set of model weights. To further probe the capabilities and limitations of Med-PaLM M, we conducted a radiologist evaluation of model-generated (and human) chest x-ray reports.ResultsWe observed encouraging performance across model scales. Med-PaLM M reached performance competitive with or exceeding the state of the art on all MultiMedBench tasks, often surpassing specialist models by a wide margin. In a side-by-side ranking on 246 retrospective chest x-rays, clinicians expressed a pairwise preference for Med-PaLM Multimodal reports over those produced by radiologists in up to 40.50% of cases, suggesting potential clinical utility.ConclusionsAlthough considerable work is needed to validate these models in real-world cases and understand if cross-modality generalization is possible, our results represent a milestone toward the development of generalist biomedical artificial intelligence systems. (Funded by Alphabet Inc. and/or a subsidiary thereof.)
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nk完成签到 ,获得积分10
刚刚
优美巧曼发布了新的文献求助10
3秒前
bathygobius完成签到,获得积分10
11秒前
凯文完成签到 ,获得积分10
12秒前
CodeCraft应助tanhaowen采纳,获得10
15秒前
找文献完成签到 ,获得积分10
18秒前
今我来思发布了新的文献求助10
21秒前
21秒前
脑洞疼应助笨笨米卡采纳,获得10
22秒前
tanhaowen发布了新的文献求助10
25秒前
下一块蛋糕完成签到 ,获得积分10
32秒前
dxwy完成签到,获得积分10
32秒前
腼腆的十八完成签到,获得积分10
34秒前
缓慢采柳完成签到 ,获得积分10
35秒前
健壮雨兰完成签到,获得积分10
38秒前
合一海盗完成签到,获得积分10
42秒前
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
Cino完成签到 ,获得积分10
47秒前
孙明丽发布了新的文献求助10
47秒前
Jeny发布了新的文献求助50
52秒前
孙明丽完成签到,获得积分10
55秒前
科研通AI5应助VDC采纳,获得10
55秒前
58秒前
DD发布了新的文献求助10
1分钟前
小怪完成签到,获得积分10
1分钟前
1分钟前
wanci应助务实一斩采纳,获得10
1分钟前
1分钟前
能干的行云完成签到,获得积分10
1分钟前
苏苏发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lisasaguan完成签到,获得积分10
1分钟前
笨笨米卡发布了新的文献求助10
1分钟前
1分钟前
汉堡包应助苏苏采纳,获得10
1分钟前
1分钟前
小马甲应助害羞小土豆采纳,获得10
1分钟前
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
The King's Magnates: A Study of the Highest Officials of the Neo-Assyrian Empire 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538906
求助须知:如何正确求助?哪些是违规求助? 3116600
关于积分的说明 9326048
捐赠科研通 2814589
什么是DOI,文献DOI怎么找? 1546891
邀请新用户注册赠送积分活动 720659
科研通“疑难数据库(出版商)”最低求助积分说明 712145