Limited data-oriented building heating load prediction method: A novel meta learning-based framework

计算机科学 机器学习 人工智能
作者
Yakai Lu,Xingyu Peng,Conghui Li,Zhe Tian,Xiangfei Kong
出处
期刊:Energy and Buildings [Elsevier]
卷期号:: 114027-114027 被引量:2
标识
DOI:10.1016/j.enbuild.2024.114027
摘要

Data-driven models have been widely used in building heating load prediction, but often fail when facing limited data. Previous studies have shown transfer learning can assist model learning of target building under limited data by means of other source building data, however, which is subject to the similarity between source and target building. Selecting similar source building data is not easy, especially when the target building is with limited data. This paper, therefore, proposes a novel meta learning-based framework for building heating load prediction. Using meta learning method, a set of promising model parameters is trained by local and global learning on multiple source buildings data. The obtained model parameters has the ability to get quickly trained with few data in each source building, which is further used as model initialization parameters of target building to assist model learning. Framework validity is confirmed by 550 groups of practical buildings data (50 are as target buildings for testing and 500 are as source buildings). The results showed the proposed framework could reduce the prediction errors by 2.04 %∼61.59 % compared with six common transfer learning methods. The novel meta learning-based framework provides an effective solution for building heating load prediction with limited data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kittypapillon发布了新的文献求助10
1秒前
gauri发布了新的文献求助80
2秒前
kiki发布了新的文献求助10
2秒前
3秒前
怕黑行恶完成签到,获得积分10
4秒前
XTC600完成签到,获得积分10
8秒前
SunJc完成签到,获得积分10
8秒前
炙热柚子完成签到,获得积分10
10秒前
爱吃麻辣烫应助kiki采纳,获得10
11秒前
biubiu完成签到 ,获得积分10
11秒前
joe发布了新的文献求助30
13秒前
骑驴找马发布了新的文献求助10
16秒前
20秒前
百里酚蓝完成签到 ,获得积分10
20秒前
破防怪完成签到,获得积分10
20秒前
斯文媚颜完成签到,获得积分10
23秒前
淡然发卡完成签到 ,获得积分10
23秒前
aoppolle发布了新的文献求助10
26秒前
斯文媚颜发布了新的文献求助10
26秒前
jj完成签到,获得积分10
26秒前
欢呼的凌兰完成签到,获得积分10
28秒前
如沐风完成签到,获得积分10
30秒前
30秒前
云游归尘完成签到 ,获得积分10
31秒前
yu发布了新的文献求助10
33秒前
李健的小迷弟应助jiandan采纳,获得10
35秒前
YiWei完成签到 ,获得积分10
38秒前
39秒前
39秒前
工科女博士应助LH采纳,获得10
40秒前
可爱的函函应助快乐东蒽采纳,获得10
40秒前
40秒前
41秒前
41秒前
畅畅发布了新的文献求助10
42秒前
43秒前
44秒前
缘子你好完成签到,获得积分10
44秒前
FBI汪宁发布了新的文献求助10
46秒前
47秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151938
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852661
捐赠科研通 2460630
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760