重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Channel-Layer-Oriented Lightweight Spectral–Spatial Network for Hyperspectral Image Classification

计算机科学 高光谱成像 卷积(计算机科学) 模式识别(心理学) 人工智能 频道(广播) 上下文图像分类 特征提取 水准点(测量) 传输(电信) 像素 特征(语言学) 卷积神经网络 人工神经网络 数据挖掘 图像(数学) 计算机网络 电信 语言学 哲学 大地测量学 地理
作者
Chunchao Li,Behnood Rasti,Xuebin Tang,Puhong Duan,Jun Li,Yuanxi Peng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3350055
摘要

Hyperspectral image (HSI) classification is commonly influenced by convolution neural networks (CNNs). However, the large number of parameters and computational complexity associated with CNNs can limit their practical application, particularly when computing and storage resources are limited. To address this challenge, we propose a channel-layer-oriented lightweight network for HSI classification. Motivated by existing structures that typically set large channels and stack multiple layers, we give more optimal solutions strategically to further compress the model. For intralayer feature extraction, we develop a channel-oriented spectral–spatial module (COS2M), which introduces a dual-single-channel (DSC) 3-D convolution that works in conjunction with depthwise convolution to fully extract spectral–spatial information. For interlayer information transmission, we propose a novel neighbor-pixel-aware activation function (NPAF), where the activation of a single pixel is determined by the learnable interaction with its neighbor range that enhances information transmission and improves the network's fitting ability through the single activation layer. By implementing these strategies, we aim to overcome the limitations of traditional CNNs and enable efficient HSI classification within resource-constrained environments. The whole network is designed to be a compact end-to-end structure. It achieves better classification performance than other deep learning methods and lightweight models, even with limited training samples. The network parameters, model complexity, and inference time also demonstrate significant superiority, as confirmed by experiments on three benchmark datasets. The source codes are available publicly at: https://github.com/AchunLee/CLOLN_TGRS
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助语芙采纳,获得10
刚刚
刚刚
听雨轩完成签到,获得积分10
1秒前
1秒前
1秒前
eternal完成签到,获得积分10
1秒前
1秒前
呱啦呱啦发布了新的文献求助10
1秒前
安德鲁完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
3秒前
sklz完成签到,获得积分10
4秒前
aikeyan完成签到 ,获得积分10
4秒前
Ning完成签到,获得积分10
4秒前
欢喜可愁发布了新的文献求助10
4秒前
4秒前
4秒前
乔乔完成签到,获得积分10
5秒前
moerr完成签到,获得积分10
5秒前
5秒前
Loki发布了新的文献求助10
5秒前
RRRabbit发布了新的文献求助10
5秒前
吃吃吃完成签到,获得积分20
5秒前
南边的海发布了新的文献求助10
5秒前
6秒前
科研通AI6应助鳗鱼雨寒采纳,获得10
6秒前
6秒前
6秒前
发顺丰发布了新的文献求助10
6秒前
7秒前
啊TiP发布了新的文献求助10
7秒前
7秒前
景Q同学完成签到,获得积分10
7秒前
乔乔发布了新的文献求助10
7秒前
酷炫的天问完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567