Channel-Layer-Oriented Lightweight Spectral–Spatial Network for Hyperspectral Image Classification

计算机科学 高光谱成像 卷积(计算机科学) 模式识别(心理学) 人工智能 频道(广播) 上下文图像分类 特征提取 水准点(测量) 传输(电信) 像素 特征(语言学) 卷积神经网络 人工神经网络 数据挖掘 图像(数学) 哲学 电信 语言学 计算机网络 地理 大地测量学
作者
Chunchao Li,Behnood Rasti,Xuebin Tang,Puhong Duan,Jun Li,Yuanxi Peng
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-14 被引量:1
标识
DOI:10.1109/tgrs.2024.3350055
摘要

Hyperspectral image (HSI) classification is commonly influenced by convolution neural networks (CNNs). However, the large number of parameters and computational complexity associated with CNNs can limit their practical application, particularly when computing and storage resources are limited. To address this challenge, we propose a channel-layer-oriented lightweight network for HSI classification. Motivated by existing structures that typically set large channels and stack multiple layers, we give more optimal solutions strategically to further compress the model. For intralayer feature extraction, we develop a channel-oriented spectral–spatial module (COS2M), which introduces a dual-single-channel (DSC) 3-D convolution that works in conjunction with depthwise convolution to fully extract spectral–spatial information. For interlayer information transmission, we propose a novel neighbor-pixel-aware activation function (NPAF), where the activation of a single pixel is determined by the learnable interaction with its neighbor range that enhances information transmission and improves the network's fitting ability through the single activation layer. By implementing these strategies, we aim to overcome the limitations of traditional CNNs and enable efficient HSI classification within resource-constrained environments. The whole network is designed to be a compact end-to-end structure. It achieves better classification performance than other deep learning methods and lightweight models, even with limited training samples. The network parameters, model complexity, and inference time also demonstrate significant superiority, as confirmed by experiments on three benchmark datasets. The source codes are available publicly at: https://github.com/AchunLee/CLOLN_TGRS
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qhjqljqd发布了新的文献求助10
1秒前
郭ggg发布了新的文献求助10
1秒前
1秒前
大树守卫发布了新的文献求助10
2秒前
哈哈哈哈完成签到,获得积分20
2秒前
4秒前
4秒前
5秒前
5秒前
水煮南瓜头完成签到,获得积分10
5秒前
Jasper应助优秀的枕头采纳,获得10
5秒前
小白狗完成签到,获得积分10
6秒前
李健应助重要墨镜采纳,获得10
6秒前
6秒前
勤奋的银耳汤给勤奋的银耳汤的求助进行了留言
7秒前
Lucas应助羫孔采纳,获得10
7秒前
8秒前
天天快乐应助哈哈哈哈采纳,获得10
9秒前
胡娇妮完成签到,获得积分10
9秒前
可爱的函函应助静静静采纳,获得10
9秒前
樱桃猴子完成签到,获得积分0
10秒前
Cheryy完成签到,获得积分10
10秒前
qhjqljqd完成签到,获得积分10
10秒前
1112222发布了新的文献求助20
12秒前
zzl-2000发布了新的文献求助10
12秒前
无花果应助杜青采纳,获得10
12秒前
文静元霜发布了新的文献求助10
12秒前
gaint发布了新的文献求助10
17秒前
17秒前
a5119712发布了新的文献求助10
17秒前
万能图书馆应助品品采纳,获得10
17秒前
18秒前
18秒前
Retrose完成签到,获得积分10
19秒前
Hello应助胡娇妮采纳,获得10
19秒前
轩辕寄风发布了新的文献求助10
20秒前
20秒前
深海鱼完成签到,获得积分10
21秒前
22秒前
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956566
求助须知:如何正确求助?哪些是违规求助? 3502673
关于积分的说明 11109597
捐赠科研通 3233488
什么是DOI,文献DOI怎么找? 1787408
邀请新用户注册赠送积分活动 870674
科研通“疑难数据库(出版商)”最低求助积分说明 802143