Synthesis and Detection Algorithms for Oblique Stripe Noise of Space-borne Remote Sensing Images

计算机科学 遥感 噪音(视频) 计算机视觉 空格(标点符号) 人工智能 斜格 地质学 图像(数学) 语言学 哲学 操作系统
作者
Binbo Li,Da Xie,Yu Wu,Lijuan Zheng,Chongbin Xu,Ying Zhou,Yibo Fu,Chenglong Wang,Bin Liu,Xiaoya Zuo
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tgrs.2024.3360268
摘要

Oblique stripe noise widely appears in remote sensing images after image correction, exhibiting arbitrary tilt angles and parallel distribution. Due to its arbitrary randomness in tilt angles and lengths, oblique stripe noise increases the difficulty of detection compared to vertical or horizontal stripe noise. For the first time, we propose a group of oblique stripe noise synthesis and detection algorithms combining imaging mechanisms and deep learning. To get controllable synthetic oblique stripe noise data for training detection model, two sample augmentation methods are presented by the image correction’s imaging mechanisms with new linear transformation and the generative adversarial network algorithm with Cycle-GAN, respectively. A large-scale simulated stripe noise dataset (SOSD, simulated oblique stripe noise dataset) is simulated using these two methods. A new deep learning detection algorithm (RDOS, Robust detection of oblique stripe Noise) is presented considering the presence of oblique stripe noise. RDOS is trained using both SOSD and a real stripe noise dataset, and it obtains the optimal detection model for testing. The experimental results show that the accuracy reaches 82.93%, the recall rate reaches 85.17%, the F1 score reaches 84.04%, the average precision (AP) reaches 82.34%, and the frames per second (FPS) reaches 33.33. Compared with the general line detection models, our model exceeds ~300% in accuracy and ~60% in speed. In the future, the proposed algorithms have great potential for application in various areas such as quality evaluation, image preprocessing, and engineering problems related to multi-angle linear object augmentation and detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chenjyuu发布了新的文献求助10
刚刚
刚刚
粗暴的仙人掌完成签到,获得积分20
刚刚
1秒前
1秒前
1秒前
logic发布了新的文献求助10
1秒前
习习应助生动的雨竹采纳,获得10
1秒前
bo完成签到 ,获得积分10
1秒前
迟大猫应助啵乐乐采纳,获得10
2秒前
安雯完成签到 ,获得积分10
2秒前
HuLL完成签到,获得积分10
2秒前
Yolo完成签到 ,获得积分10
2秒前
难过的慕青完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
5秒前
无花果应助sunzhiyu233采纳,获得10
5秒前
韭黄完成签到,获得积分20
5秒前
6秒前
诚c发布了新的文献求助10
6秒前
自然秋柳完成签到 ,获得积分10
6秒前
我是老大应助经法采纳,获得10
6秒前
默默的皮牙子应助经法采纳,获得10
6秒前
orixero应助经法采纳,获得10
6秒前
小马甲应助经法采纳,获得10
6秒前
柚子成精应助经法采纳,获得10
7秒前
小蘑菇应助经法采纳,获得10
7秒前
深情安青应助经法采纳,获得10
7秒前
李爱国应助经法采纳,获得10
7秒前
共享精神应助经法采纳,获得10
7秒前
yyyyyy完成签到 ,获得积分10
7秒前
LL完成签到,获得积分10
7秒前
ziyiziyi发布了新的文献求助10
8秒前
哈哈哈haha发布了新的文献求助40
8秒前
8秒前
啵乐乐完成签到,获得积分10
9秒前
哈哈完成签到,获得积分20
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759