🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

A New Pavement Recognition Method of 24-GHz Radar Based on Prior Knowledge and Data-Driven

计算机科学 人工智能 雷达 特征提取 传感器融合 雷达成像 模式识别(心理学) 雷达工程细节 支持向量机 计算机视觉 移动机器人 数据建模 机器人 电信 数据库
作者
Zhangu Wang,Jingyu Xin,Mu Li,Jianxiang Huang,Zongshan Zhao,Jun Zhao
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (6): 9082-9092
标识
DOI:10.1109/jsen.2023.3347265
摘要

Accurate and efficient road recognition is very important for the control of mobile robots and autonomous vehicles. In this paper, a new road surface recognition method based on 24GHz millimeter-wave radar is proposed, which has better environmental adaptability compared with machine vision and absolute cost advantage compared with lidar. The core of our method is to propose a radar feature fusion method based on prior knowledge and data-driven. Firstly, the echo signal of radar is subjected to statistical analysis, thereby confirming the distinguishability of radar signals for various road types. Then, we extract 8-dimensional statistical features as prior knowledge features based on statistics. Secondly, we have designed a new representation method of radar data, which reconstructs the radar data in time series based on graphical modeling and transforms the discrete radar data into an image representation. Then the efficient network Inception-v3 and transfer learning are used to extract data-driven features from graphical radar data. Subsequently, the feature-level fusion of prior knowledge features and data-driven features is performed to generate the feature vector that can be trained. Finally, we built the road recognition classifier based on the advanced machine learning model and used different road environments to test the effectiveness of the model. The experimental results show that our method achieves 90.6% recognition accuracy and 32 Fps inference speed under a 24GHz radar with a cost of only $16, which can be widely used in mobile robots and autonomous vehicles.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助小怎怎采纳,获得10
1秒前
画晴发布了新的文献求助30
1秒前
1秒前
刘家翔发布了新的文献求助10
1秒前
1秒前
GZY发布了新的文献求助10
1秒前
陶醉的匕发布了新的文献求助50
1秒前
1秒前
2秒前
2秒前
无花果应助yangruoning采纳,获得10
3秒前
4秒前
大佬鼠的朋友完成签到,获得积分10
4秒前
5秒前
5秒前
1aa完成签到,获得积分10
6秒前
7秒前
7秒前
zZ发布了新的文献求助10
8秒前
一目发布了新的文献求助10
8秒前
9秒前
EasyE完成签到,获得积分10
9秒前
lian发布了新的文献求助10
9秒前
柒_l发布了新的文献求助10
10秒前
10秒前
科研通AI5应助echo采纳,获得10
10秒前
10秒前
11秒前
董大米发布了新的文献求助10
11秒前
爆米花应助听话的巨人采纳,获得10
12秒前
12秒前
ikun完成签到,获得积分10
13秒前
搜集达人应助陌兮愫采纳,获得10
13秒前
mmj完成签到,获得积分10
14秒前
苏打水发布了新的文献求助10
14秒前
young发布了新的文献求助10
15秒前
16秒前
画晴完成签到,获得积分20
17秒前
18秒前
89757完成签到,获得积分10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
Barth, Derrida and the Language of Theology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3602553
求助须知:如何正确求助?哪些是违规求助? 3170828
关于积分的说明 9567905
捐赠科研通 2877092
什么是DOI,文献DOI怎么找? 1579901
邀请新用户注册赠送积分活动 742870
科研通“疑难数据库(出版商)”最低求助积分说明 725516