重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

DCL-SLAM: A Distributed Collaborative LiDAR SLAM Framework for a Robotic Swarm

同时定位和映射 激光雷达 里程计 计算机科学 人工智能 计算机视觉 机器人 群体行为 移动机器人 遥感 地理
作者
Shipeng Zhong,Yuhua Qi,Zhiqiang Chen,Jin Wu,Hongbo Chen,Ming Liu
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4786-4797 被引量:17
标识
DOI:10.1109/jsen.2023.3345541
摘要

To execute collaborative tasks in unknown environments, a robotic swarm must establish a global reference frame and locate itself in a shared understanding of the environment. However, it faces many challenges in real-world scenarios, such as the prior information about the environment being absent and poor communication among the team members. This work presents DCL-SLAM, a front-end agnostic fully distributed collaborative Light Detection And Ranging (LiDAR) SLAM framework to co-localize in an unknown environment with low information exchange. Based on peer-to-peer communication, DCL-SLAM adopts the lightweight LiDAR-Iris descriptor for place recognition and does not require full team connectivity. DCL-SLAM includes three main parts: a replaceable single-robot front-end LiDAR odometry, a distributed loop closure module that detects overlaps between robots, and a distributed back-end module that adapts distributed pose graph optimizer combined with rejecting spurious loop measurements. We integrate the proposed framework with diverse open-source LiDAR odometry to show its versatility. The proposed system is extensively evaluated on benchmarking datasets and field experiments over various scales and environments. The experimental results show that DCL-SLAM achieves higher accuracy and lower bandwidth than other state-of-the-art multirobot LiDAR SLAM systems. The source code and video demonstration are available at https://github.com/PengYu-Team/DCL-SLAM .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssssss发布了新的文献求助10
刚刚
123完成签到,获得积分10
1秒前
1秒前
neko发布了新的文献求助10
2秒前
不知道完成签到,获得积分10
3秒前
澎鱼盐完成签到,获得积分10
3秒前
科研迪发布了新的文献求助10
3秒前
旋风狗超人完成签到,获得积分10
3秒前
CodeCraft应助帅气的高跟鞋采纳,获得10
4秒前
4秒前
JTHan发布了新的文献求助10
4秒前
4秒前
4秒前
雪山飞龙发布了新的文献求助10
4秒前
隐形曼青应助盲盒采纳,获得10
5秒前
gouqi完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
king发布了新的文献求助10
6秒前
7秒前
JasVe发布了新的文献求助10
7秒前
mlxwl发布了新的文献求助10
7秒前
Zx_1993应助sxy采纳,获得20
8秒前
LFZ完成签到 ,获得积分10
8秒前
ww完成签到 ,获得积分20
8秒前
8秒前
8秒前
8秒前
呱啦呱啦发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
Akim应助qtr采纳,获得10
9秒前
9秒前
年糕111发布了新的文献求助10
9秒前
10秒前
烟花应助neko采纳,获得10
10秒前
舒适访彤发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567