A Method for Prediction of In-situ Stress Based on Empirical Formula and BP Neural Network

人工神经网络 计算机科学 人工智能
作者
Chuan-gang Xiang,Bo Chi,Shuyan Sun
出处
期刊:Springer series in geomechanics and geoengineering 卷期号:: 485-497
标识
DOI:10.1007/978-981-97-0272-5_41
摘要

To solve the problems of complex in-situ stress of tight sandstone reservoir, few sample points of experimental data, difficulty in in-situ stress prediction, etc., a method for one-dimensional, two-dimensional and three-dimensional in-situ stress prediction based on geomechanics and BP neural network was innovatively proposed by comprehensively using various data such as core data, mechanical experimental data, logging data, etc. In this method, the rock mechanics parameters of single well in the study area were predicted by neural network method using the logging data as the learning sample and measured rock physical parameters as the monitoring data first; then the in-situ stress of single well was accordingly calculated by empirical formula, and predicted and analyzed by neural network algorithm using the calculated in-situ stress of single well selected by error analysis and the indoor measured in-situ stress as the monitoring data and the conventional logging data as the learning samples. The application in the actual areas shows that the predicted results of in-situ stress not only conform to the measured data, but also follow the logging curves, and thus provide an important basis for the design of integrated geological engineering scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助huco采纳,获得10
刚刚
1秒前
sutychen发布了新的文献求助10
1秒前
wellforever完成签到 ,获得积分10
2秒前
HNNUYanY发布了新的文献求助10
5秒前
Hh完成签到,获得积分10
5秒前
Hexi完成签到,获得积分20
5秒前
6秒前
fmwang完成签到,获得积分10
7秒前
oasissmz完成签到,获得积分10
10秒前
10秒前
秀丽紊完成签到,获得积分10
11秒前
Jasper应助ZHOUJING采纳,获得10
12秒前
GGBOND2024应助sutychen采纳,获得10
13秒前
风中的一德完成签到,获得积分10
15秒前
长常九久完成签到 ,获得积分10
17秒前
17秒前
星辰大海应助飘逸的雪萍采纳,获得10
21秒前
XYZ完成签到 ,获得积分10
23秒前
雨琴完成签到,获得积分10
24秒前
嗯哼关注了科研通微信公众号
25秒前
园艺小学生关注了科研通微信公众号
26秒前
MFNM完成签到,获得积分10
26秒前
希望天下0贩的0应助Maxmium采纳,获得10
27秒前
葡萄皮发布了新的文献求助10
28秒前
29秒前
可爱的函函应助Lyrics采纳,获得10
29秒前
文献完成签到,获得积分10
31秒前
31秒前
32秒前
one完成签到 ,获得积分10
32秒前
33秒前
你好完成签到,获得积分10
33秒前
FJ完成签到,获得积分10
33秒前
hecarli完成签到,获得积分10
35秒前
LRxxx完成签到 ,获得积分10
36秒前
独特纸飞机完成签到 ,获得积分10
36秒前
hanshiyi发布了新的文献求助10
38秒前
39秒前
哈哈哈发布了新的文献求助10
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139874
求助须知:如何正确求助?哪些是违规求助? 2790776
关于积分的说明 7796637
捐赠科研通 2447191
什么是DOI,文献DOI怎么找? 1301692
科研通“疑难数据库(出版商)”最低求助积分说明 626313
版权声明 601194