A Method for Prediction of In-situ Stress Based on Empirical Formula and BP Neural Network

人工神经网络 计算机科学 人工智能
作者
Chuan-gang Xiang,Bo Chi,Shuyan Sun
出处
期刊:Springer series in geomechanics and geoengineering 卷期号:: 485-497
标识
DOI:10.1007/978-981-97-0272-5_41
摘要

To solve the problems of complex in-situ stress of tight sandstone reservoir, few sample points of experimental data, difficulty in in-situ stress prediction, etc., a method for one-dimensional, two-dimensional and three-dimensional in-situ stress prediction based on geomechanics and BP neural network was innovatively proposed by comprehensively using various data such as core data, mechanical experimental data, logging data, etc. In this method, the rock mechanics parameters of single well in the study area were predicted by neural network method using the logging data as the learning sample and measured rock physical parameters as the monitoring data first; then the in-situ stress of single well was accordingly calculated by empirical formula, and predicted and analyzed by neural network algorithm using the calculated in-situ stress of single well selected by error analysis and the indoor measured in-situ stress as the monitoring data and the conventional logging data as the learning samples. The application in the actual areas shows that the predicted results of in-situ stress not only conform to the measured data, but also follow the logging curves, and thus provide an important basis for the design of integrated geological engineering scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
changping应助蓝风铃采纳,获得10
1秒前
情怀应助橙子采纳,获得10
2秒前
ZhouQixing发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
syr完成签到,获得积分10
4秒前
abcd_1067发布了新的文献求助10
4秒前
搜集达人应助知非采纳,获得10
6秒前
jackten发布了新的文献求助10
6秒前
6秒前
123zyx发布了新的文献求助10
6秒前
7秒前
Vizz发布了新的文献求助10
8秒前
8秒前
9秒前
wanci应助亚铁氰化钾采纳,获得10
9秒前
yongjiang完成签到,获得积分10
10秒前
高高亦竹发布了新的文献求助30
10秒前
KyrieIrving关注了科研通微信公众号
10秒前
NexusExplorer应助甜甜斓采纳,获得10
11秒前
搜集达人应助che采纳,获得10
12秒前
科研通AI5应助慢慢采纳,获得10
12秒前
12秒前
balabala完成签到,获得积分20
13秒前
雷雷发布了新的文献求助10
13秒前
13秒前
烟花应助puppet采纳,获得10
14秒前
稗子发布了新的文献求助10
15秒前
小蘑菇应助妮子采纳,获得10
16秒前
17秒前
顾矜应助Yun yun采纳,获得10
17秒前
张颖发布了新的文献求助10
18秒前
18秒前
77完成签到,获得积分10
19秒前
情怀应助舒心芷荷采纳,获得10
19秒前
Gonna留下了新的社区评论
19秒前
athenalin1988发布了新的文献求助10
19秒前
haoqisheng发布了新的文献求助10
20秒前
冰美式不加糖完成签到,获得积分10
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5208817
求助须知:如何正确求助?哪些是违规求助? 4386099
关于积分的说明 13660012
捐赠科研通 4245182
什么是DOI,文献DOI怎么找? 2329154
邀请新用户注册赠送积分活动 1326960
关于科研通互助平台的介绍 1279228