Extreme gradient boosting-based multiscale heat source modeling for analysis of solid-state phase transformation in additive manufacturing of Ti-6Al-4V

材料科学 Boosting(机器学习) 固态 转化(遗传学) 复合材料 工程物理 人工智能 计算机科学 生物化学 基因 工程类 化学
作者
Yeon-Su Lee,Kang‐Hyun Lee,Minda Chung,Gun Jin Yun
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:113: 319-345
标识
DOI:10.1016/j.jmapro.2024.01.044
摘要

The formation of the microstructure throughout the manufacturing process in metal additive manufacturing (MAM) significantly affects the properties and functionality of the resulting component. Hence, gaining a comprehensive understanding of microstructure development is crucial to predict and control the fabricated part's performance effectively. Since the temperature difference significantly impacts microstructure evolution, it is important to get a precise temperature history during the MAM process. However, evaluating the temperature history demands considerable computational resources, particularly for a part-scale analysis. Therefore, this paper presents a part-scale heat source model that enables analysis on a larger scale without losing consistency with a microscale moving heat source model. In particular, this paper proposes a multi-stage calibration framework that bridges empirical experiments with multi-scale heat source models. Finally, the calibrated part-scale heat source model was utilized to examine the solid-state phase transformation (SSPT) occurring in different structures' MAM processes. Then, the effect of heating cycles on the formation of microstructures throughout the multi-track and multi-layer MAM process was examined. Subsequently, the proposed methodology enables the analysis of microstructure transformation at part-scale with affordable computational cost. It facilitates understanding the interplay between process and part geometries in the additive manufacturing of metallic components in terms of SSPT. In other words, our framework guides the process's design by linking the part-scale geometries and the microstructure transformation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
完美世界应助受伤棉花糖采纳,获得10
1秒前
Daisy发布了新的文献求助10
1秒前
1秒前
简单的涵阳完成签到 ,获得积分10
1秒前
英俊的铭应助满锅采纳,获得10
1秒前
Wendy完成签到,获得积分10
1秒前
WN发布了新的文献求助10
2秒前
鲈鱼完成签到,获得积分10
2秒前
磨人的老妖精完成签到,获得积分10
3秒前
火火完成签到,获得积分10
3秒前
yy完成签到,获得积分10
3秒前
pyrene完成签到 ,获得积分10
4秒前
公冶菲鹰发布了新的文献求助10
4秒前
热热完成签到,获得积分10
4秒前
zzz完成签到 ,获得积分10
4秒前
Jared应助黎黎采纳,获得10
5秒前
5秒前
5秒前
斯文败类应助XXXXX采纳,获得10
5秒前
阿芜完成签到,获得积分10
6秒前
LV发布了新的文献求助10
6秒前
qiuxiali123发布了新的文献求助10
6秒前
6秒前
CodeCraft应助miao采纳,获得10
6秒前
6秒前
LSW完成签到 ,获得积分10
7秒前
顾矜应助IF采纳,获得30
8秒前
咸鱼咸完成签到,获得积分10
8秒前
Kauio发布了新的文献求助10
8秒前
幸运鹅47完成签到,获得积分10
8秒前
orixero应助niagvbjkhsdfvc采纳,获得10
8秒前
hanyahui完成签到,获得积分10
9秒前
eliot完成签到,获得积分10
9秒前
9秒前
Zhao_Kai发布了新的文献求助10
9秒前
爆米花应助而风不止采纳,获得10
9秒前
坚强的紫菜完成签到,获得积分10
9秒前
熊风发布了新的文献求助10
10秒前
核桃完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005