Binocular Underwater Measurement With Multicolor Structured Light

水下 计算机视觉 人工智能 计算机科学 结构光 光学 双眼视觉 职位(财务) 物理 地质学 海洋学 财务 经济
作者
Shuaishuai Li,Xiang Gao,Zhengchao Xie
出处
期刊:IEEE Journal of Oceanic Engineering [Institute of Electrical and Electronics Engineers]
卷期号:49 (2): 649-666
标识
DOI:10.1109/joe.2023.3315397
摘要

This article designs an underwater binocular measurement system combining binocular vision and multicolor structured light, for the problem of autonomous grasping by underwater robots. In our solution, multiple colored stripes of structured light are projected on the surface of the object to be measured at once without the scanning process and, thus, have the advantages of high measurement accuracy, efficiency, stability, and reliability, which could realize the survey and positioning of underwater targets and guide the robotic arm to grasp the underwater targets autonomously. In this article, an underwater binocular measurement model with nonparallel and non-co-refractive surfaces is established by tracing the propagation path of light in water, and a multicolor structured light array is used to provide active visual features for the underwater object to be measured by projecting the multicolor structured light array, avoiding the limitation of the center point of monochromatic structured light, and the object could be at any position in the binocular field of view. Then, the laser strip images were separated from the background and segmented by the HSV double-threshold segmentation method; the color light stripes segmented from the left and right images were matched corresponding to their color information and position information. Finally, the feature points required for measurement are extracted from the laser stripe images taken by the left and right cameras to achieve a fast underwater survey, and through analyzing the experimental data and observing the object 3-D reconstruction effect, the effectiveness and accuracy of the underwater binocular measurement model and the underwater binocular matching algorithm established in this article are proved.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助勤劳的舞蹈采纳,获得10
2秒前
2秒前
wanci应助ptalala采纳,获得10
4秒前
明亮的冬天完成签到,获得积分10
6秒前
就这发布了新的文献求助10
7秒前
7秒前
豆⑧完成签到,获得积分10
8秒前
佳思思完成签到,获得积分10
9秒前
郝56完成签到,获得积分10
10秒前
机灵海云完成签到 ,获得积分10
11秒前
稳重的麦片应助dannier采纳,获得10
11秒前
11秒前
奥特曼发布了新的文献求助100
11秒前
12秒前
Yifan2024应助CCC采纳,获得20
12秒前
尤里有气发布了新的文献求助10
14秒前
郝56发布了新的文献求助10
14秒前
白切鸡大人完成签到,获得积分10
15秒前
dai完成签到,获得积分10
15秒前
一叶扁舟发布了新的文献求助10
16秒前
16秒前
konosuba完成签到,获得积分10
16秒前
16秒前
冰冰发布了新的文献求助20
17秒前
colddie完成签到,获得积分10
18秒前
Yifan2024应助单纯采纳,获得30
18秒前
米六完成签到 ,获得积分10
18秒前
Yifan2024应助酷炫小笼包采纳,获得80
19秒前
尤里有气完成签到,获得积分10
19秒前
科研通AI2S应助光亮念文采纳,获得10
20秒前
司空威发布了新的文献求助10
20秒前
21秒前
22秒前
热忱发布了新的文献求助10
23秒前
斯文败类应助在林耳采纳,获得10
24秒前
Fluency完成签到,获得积分10
25秒前
眼睛大白梦完成签到,获得积分10
25秒前
打打应助兴奋的怀曼采纳,获得10
25秒前
可爱无招完成签到,获得积分10
27秒前
米六发布了新的文献求助10
27秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Very-high-order BVD Schemes Using β-variable THINC Method 990
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Field Guide to Insects of South Africa 660
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3396049
求助须知:如何正确求助?哪些是违规求助? 3006035
关于积分的说明 8818966
捐赠科研通 2693026
什么是DOI,文献DOI怎么找? 1475062
科研通“疑难数据库(出版商)”最低求助积分说明 682393
邀请新用户注册赠送积分活动 675495