Underwater sonar target detection based on improved ScEMA YOLOv8

声纳 水下 合成孔径声纳 计算机科学 遥感 地质学 海洋工程 人工智能 海洋学 工程类
作者
Linhan Zheng,Tao Hu,Jin Zhu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:9
标识
DOI:10.1109/lgrs.2024.3397848
摘要

Underwater target detection is mainly achieved through two methods: optical imaging and sonar scanning. Compared to optical imaging, sonar target detection has the characteristics of strong penetration and long scanning distance, which makes it more suitable for tasks such as deep sea, turbid water, and long-distance target detection. However, currently sonar image detection still faces the following challenges: (1) difficulty in obtaining underwater sonar images and scarcity of existing open-source sonar data sets; (2)The quality of sonar image is poor, which is limited by environmental noise interference, sonar equipment and related signal processing technology; (3)Compared to optical images, Sonar images are more difficult to detect small targets; (4)Due to the influence of underwater terrain, debris, and the degree of self decay. there are significant differences in the distribution of targets in sonar images, and different types of sonar (such as side scan sonar, forward view sonar, etc.) have significant differences in visual presentation. Therefore, our article proposes an underwater target detection framework based on improved ScEMA-YOLOv8 and conducts comparative experiments on data enhancement and transfer learning. Experimental results have shown that the improved model achieves 98.4% and 97.6% mAP@0.5 and it can also achieve high precision and meet the requirements of real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助鹤轸采纳,获得10
刚刚
刚刚
刚刚
大模型应助田田采纳,获得10
刚刚
神奇的海螺完成签到,获得积分10
1秒前
聪明伊发布了新的文献求助10
1秒前
JN完成签到,获得积分10
1秒前
梅里完成签到,获得积分10
1秒前
1秒前
情怀应助Wang0102采纳,获得10
2秒前
3秒前
谭冬冬完成签到,获得积分10
3秒前
3秒前
4秒前
艽野完成签到,获得积分10
4秒前
优秀爆米花完成签到,获得积分10
5秒前
5秒前
zz关闭了zz文献求助
6秒前
6秒前
spc68应助读书的时候采纳,获得10
7秒前
海鲭发布了新的文献求助30
9秒前
能干的向真完成签到,获得积分10
9秒前
木木发布了新的文献求助10
9秒前
务实冰烟发布了新的文献求助10
9秒前
10秒前
Inory007发布了新的文献求助10
10秒前
郭建福完成签到,获得积分10
10秒前
jimmyyyyyy发布了新的文献求助10
11秒前
YaoHui发布了新的文献求助10
11秒前
葡萄柚绿茶完成签到,获得积分10
11秒前
12秒前
gy发布了新的文献求助10
13秒前
椿人发布了新的文献求助20
13秒前
14秒前
夏天夏天悄悄过去完成签到,获得积分10
14秒前
JamesPei应助喜悦冰烟采纳,获得10
14秒前
14秒前
田様应助骄傲哇采纳,获得10
15秒前
16秒前
ZOLEI完成签到,获得积分10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693319
求助须知:如何正确求助?哪些是违规求助? 5092294
关于积分的说明 15211264
捐赠科研通 4850295
什么是DOI,文献DOI怎么找? 2601689
邀请新用户注册赠送积分活动 1553480
关于科研通互助平台的介绍 1511450