Underwater sonar target detection based on improved ScEMA YOLOv8

声纳 水下 合成孔径声纳 计算机科学 遥感 地质学 海洋工程 人工智能 海洋学 工程类
作者
Linhan Zheng,Tao Hu,Jin Zhu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:9
标识
DOI:10.1109/lgrs.2024.3397848
摘要

Underwater target detection is mainly achieved through two methods: optical imaging and sonar scanning. Compared to optical imaging, sonar target detection has the characteristics of strong penetration and long scanning distance, which makes it more suitable for tasks such as deep sea, turbid water, and long-distance target detection. However, currently sonar image detection still faces the following challenges: (1) difficulty in obtaining underwater sonar images and scarcity of existing open-source sonar data sets; (2)The quality of sonar image is poor, which is limited by environmental noise interference, sonar equipment and related signal processing technology; (3)Compared to optical images, Sonar images are more difficult to detect small targets; (4)Due to the influence of underwater terrain, debris, and the degree of self decay. there are significant differences in the distribution of targets in sonar images, and different types of sonar (such as side scan sonar, forward view sonar, etc.) have significant differences in visual presentation. Therefore, our article proposes an underwater target detection framework based on improved ScEMA-YOLOv8 and conducts comparative experiments on data enhancement and transfer learning. Experimental results have shown that the improved model achieves 98.4% and 97.6% mAP@0.5 and it can also achieve high precision and meet the requirements of real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
赫青亦驳回了iNk应助
1秒前
花畦种豆发布了新的文献求助10
1秒前
xiaowang发布了新的文献求助10
1秒前
3秒前
精明的靖雁完成签到,获得积分10
3秒前
科研通AI6应助丫丫采纳,获得10
3秒前
3秒前
gao发布了新的文献求助10
3秒前
3秒前
4秒前
潘潘完成签到,获得积分10
4秒前
JiaoJiao发布了新的文献求助10
4秒前
大模型应助lzl993采纳,获得20
4秒前
迷路m发布了新的文献求助10
5秒前
哆啦A榕发布了新的文献求助10
6秒前
6秒前
Cest完成签到 ,获得积分10
6秒前
满意雪碧发布了新的文献求助10
7秒前
Ava应助王肖采纳,获得10
7秒前
科目三应助沙糖桔采纳,获得10
7秒前
星辰大海应助aming采纳,获得10
7秒前
任性醉山发布了新的文献求助10
8秒前
anpingzhao完成签到,获得积分10
8秒前
gorgeous发布了新的文献求助10
8秒前
8秒前
look完成签到,获得积分10
8秒前
Iridescent发布了新的文献求助10
8秒前
chenzhi发布了新的文献求助10
9秒前
11秒前
小灰灰666发布了新的文献求助10
11秒前
12秒前
可耐的碧萱应助超级以云采纳,获得10
12秒前
量子星尘发布了新的文献求助10
14秒前
小马甲应助任性醉山采纳,获得10
14秒前
14秒前
pxy发布了新的文献求助20
14秒前
Orange应助LGJ采纳,获得10
15秒前
Owen应助潘潘采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Eurocode 7. Geotechnical design - General rules (BS EN 1997-1:2004+A1:2013) 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5578485
求助须知:如何正确求助?哪些是违规求助? 4663329
关于积分的说明 14746065
捐赠科研通 4604137
什么是DOI,文献DOI怎么找? 2526852
邀请新用户注册赠送积分活动 1496464
关于科研通互助平台的介绍 1465760