Underwater sonar target detection based on improved ScEMA YOLOv8

声纳 水下 合成孔径声纳 计算机科学 遥感 地质学 海洋工程 人工智能 海洋学 工程类
作者
Linhan Zheng,Tao Hu,Jin Zhu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:9
标识
DOI:10.1109/lgrs.2024.3397848
摘要

Underwater target detection is mainly achieved through two methods: optical imaging and sonar scanning. Compared to optical imaging, sonar target detection has the characteristics of strong penetration and long scanning distance, which makes it more suitable for tasks such as deep sea, turbid water, and long-distance target detection. However, currently sonar image detection still faces the following challenges: (1) difficulty in obtaining underwater sonar images and scarcity of existing open-source sonar data sets; (2)The quality of sonar image is poor, which is limited by environmental noise interference, sonar equipment and related signal processing technology; (3)Compared to optical images, Sonar images are more difficult to detect small targets; (4)Due to the influence of underwater terrain, debris, and the degree of self decay. there are significant differences in the distribution of targets in sonar images, and different types of sonar (such as side scan sonar, forward view sonar, etc.) have significant differences in visual presentation. Therefore, our article proposes an underwater target detection framework based on improved ScEMA-YOLOv8 and conducts comparative experiments on data enhancement and transfer learning. Experimental results have shown that the improved model achieves 98.4% and 97.6% mAP@0.5 and it can also achieve high precision and meet the requirements of real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张一凡完成签到,获得积分10
刚刚
刚刚
1秒前
Jasper应助老实小虾米采纳,获得10
2秒前
2秒前
caichengyu发布了新的文献求助10
2秒前
qingshui发布了新的文献求助10
3秒前
仰泳鲫鱼发布了新的文献求助10
4秒前
orixero应助丰富的河马采纳,获得10
4秒前
斯文败类应助丰富的河马采纳,获得10
5秒前
慕青应助丰富的河马采纳,获得50
5秒前
AN应助丰富的河马采纳,获得10
5秒前
ccm应助丰富的河马采纳,获得10
5秒前
wenyuLuo完成签到,获得积分10
5秒前
追寻清完成签到,获得积分10
5秒前
6秒前
xxf完成签到,获得积分10
6秒前
pyt发布了新的文献求助30
6秒前
调皮的大炮完成签到 ,获得积分10
8秒前
魏欣雨完成签到,获得积分10
8秒前
jzt12138发布了新的文献求助10
9秒前
一一应助第二支羽毛采纳,获得10
10秒前
老实小虾米完成签到,获得积分10
11秒前
栗悟饭完成签到,获得积分10
12秒前
星落枝头完成签到,获得积分20
12秒前
Lucas应助永和采纳,获得10
12秒前
潇潇发布了新的文献求助10
13秒前
13秒前
Jasper应助MingQue采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
大个应助000采纳,获得10
14秒前
星落枝头发布了新的文献求助10
15秒前
呜啦啦完成签到,获得积分10
15秒前
15秒前
量子星尘发布了新的文献求助10
16秒前
可爱的函函应助pyt采纳,获得30
16秒前
JJW发布了新的文献求助10
17秒前
Jasper应助jzt12138采纳,获得10
19秒前
evans完成签到,获得积分10
19秒前
皮蛋发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711580
求助须知:如何正确求助?哪些是违规求助? 5204694
关于积分的说明 15264720
捐赠科研通 4863859
什么是DOI,文献DOI怎么找? 2610959
邀请新用户注册赠送积分活动 1561329
关于科研通互助平台的介绍 1518667