Underwater sonar target detection based on improved ScEMA YOLOv8

声纳 水下 合成孔径声纳 计算机科学 遥感 地质学 海洋工程 人工智能 海洋学 工程类
作者
Linhan Zheng,Tao Hu,Jin Zhu
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:21: 1-5 被引量:9
标识
DOI:10.1109/lgrs.2024.3397848
摘要

Underwater target detection is mainly achieved through two methods: optical imaging and sonar scanning. Compared to optical imaging, sonar target detection has the characteristics of strong penetration and long scanning distance, which makes it more suitable for tasks such as deep sea, turbid water, and long-distance target detection. However, currently sonar image detection still faces the following challenges: (1) difficulty in obtaining underwater sonar images and scarcity of existing open-source sonar data sets; (2)The quality of sonar image is poor, which is limited by environmental noise interference, sonar equipment and related signal processing technology; (3)Compared to optical images, Sonar images are more difficult to detect small targets; (4)Due to the influence of underwater terrain, debris, and the degree of self decay. there are significant differences in the distribution of targets in sonar images, and different types of sonar (such as side scan sonar, forward view sonar, etc.) have significant differences in visual presentation. Therefore, our article proposes an underwater target detection framework based on improved ScEMA-YOLOv8 and conducts comparative experiments on data enhancement and transfer learning. Experimental results have shown that the improved model achieves 98.4% and 97.6% mAP@0.5 and it can also achieve high precision and meet the requirements of real-time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Orange应助zhangcdoctor采纳,获得10
2秒前
一只羊发布了新的文献求助10
3秒前
博修发布了新的文献求助10
3秒前
genesquared完成签到,获得积分10
4秒前
渊思发布了新的文献求助10
4秒前
星辰大海应助linmo采纳,获得10
4秒前
YamDaamCaa应助qikkk采纳,获得30
5秒前
研友_LaNYNn发布了新的文献求助10
5秒前
Hello应助啦啦啦啦采纳,获得10
5秒前
莘莘发布了新的文献求助10
6秒前
BingyuDu完成签到 ,获得积分20
6秒前
星辰大海应助咕噜坚果采纳,获得10
8秒前
9秒前
zzzkyt发布了新的文献求助10
11秒前
汉堡包应助科研爱好者采纳,获得10
11秒前
11秒前
12秒前
13秒前
14秒前
饼藏发布了新的文献求助80
15秒前
领导范儿应助zzzkyt采纳,获得10
15秒前
15秒前
16秒前
打打应助刘刘宇航采纳,获得10
16秒前
17秒前
谦让的牛排完成签到 ,获得积分10
18秒前
18秒前
耶耶耶发布了新的文献求助10
18秒前
19秒前
linmo发布了新的文献求助10
19秒前
隐形曼青应助xuaotian采纳,获得30
20秒前
334发布了新的文献求助10
20秒前
北岭雪兮发布了新的文献求助10
21秒前
刘刘宇航完成签到,获得积分10
21秒前
21秒前
22秒前
23秒前
YamDaamCaa应助qikkk采纳,获得30
23秒前
23秒前
cy完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967779
求助须知:如何正确求助?哪些是违规求助? 3512913
关于积分的说明 11165458
捐赠科研通 3247930
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578