Automatic grading of knee osteoarthritis with a plain radiograph radiomics model: combining anteroposterior and lateral images

医学 神经组阅片室 骨关节炎 接收机工作特性 逻辑回归 放射科 射线照相术 分级(工程) 磁共振成像 介入放射学 无线电技术 核医学 队列 膝关节 人工智能 外科 计算机科学 内科学 病理 替代医学 土木工程 工程类 精神科 神经学
作者
Wei Li,Jin Liu,Zhongli Xiao,Dantian Zhu,Jianwei Liao,Wenjun Yu,Jiaxin Feng,Baoxin Qian,Yijie Fang,Shaolin Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01719-3
摘要

Abstract Objectives To establish a radiomics-based automatic grading model for knee osteoarthritis (OA) and evaluate the influence of different body positions on the model’s effectiveness. Materials and methods Plain radiographs of a total of 473 pairs of knee joints from 473 patients (May 2020 to July 2021) were retrospectively analyzed. Each knee joint included anteroposterior (AP) and lateral (LAT) images which were randomly assigned to the training cohort and the testing cohort at a ratio of 7:3. First, an assessment of knee OA severity was done by two independent radiologists with Kallgren–Lawrence grading scale. Then, another two radiologists independently delineated the region of interest for radiomic feature extraction and selection. The radiomic classification features were dimensionally reduced and a machine model was conducted using logistic regression (LR). Finally, the classification efficiency of the model was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Results The AUC (macro/micro) of the model using a combination of AP and LAT (AP&LAT) images were 0.772/0.778, 0.818/0.799, and 0.864/0.879, respectively. The radiomic features from the combined images achieved better classification performance than the individual position image ( p < 0.05). The overall accuracy of the radiomic model with AP&LAT images was 0.727 compared to 0.712 and 0.417 for radiologists with 4 years and 2 years of musculoskeletal diagnostic experience. Conclusions A radiomic model constructed by combining the AP&LAT images of the knee joint can better grade knee OA and assist clinicians in accurate diagnosis and treatment. Critical relevance statement A radiomic model based on plain radiographs accurately grades knee OA severity. By utilizing the LR classifier and combining AP&LAT images, it improves accuracy and consistency in grading, aiding clinical decision-making, and treatment planning. Key Points Radiomic model performed more accurately in K/L grading of knee OA than junior radiologists. Radiomic features from the combined images achieved better classification performance than the individual position image. A radiomic model can improve the grading of knee OA and assist in diagnosis and treatment. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周新运完成签到,获得积分10
1秒前
雍不斜发布了新的文献求助10
1秒前
1秒前
明理的南风完成签到,获得积分10
2秒前
qcl完成签到,获得积分10
2秒前
安然无恙完成签到,获得积分10
2秒前
半夏完成签到,获得积分10
3秒前
玉鱼儿完成签到 ,获得积分10
3秒前
lf-leo完成签到,获得积分10
4秒前
Hello应助nyfz2002采纳,获得10
4秒前
Dandy发布了新的文献求助10
5秒前
大个应助科研通管家采纳,获得10
6秒前
lizhaoyu应助科研通管家采纳,获得10
6秒前
lizhaoyu应助科研通管家采纳,获得10
6秒前
沛沛完成签到,获得积分10
6秒前
lizhaoyu应助科研通管家采纳,获得10
6秒前
lizhaoyu应助科研通管家采纳,获得10
6秒前
Lucas应助科研通管家采纳,获得10
6秒前
DijiaXu应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得50
7秒前
ding应助科研通管家采纳,获得10
7秒前
在水一方应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
7秒前
传奇3应助科研狗采纳,获得10
7秒前
Serendiply完成签到,获得积分10
8秒前
8秒前
dola完成签到,获得积分10
8秒前
kagami发布了新的文献求助10
8秒前
9秒前
忽然之间完成签到,获得积分10
9秒前
10秒前
10秒前
王小平完成签到,获得积分10
11秒前
范先生完成签到,获得积分10
11秒前
jeremy完成签到,获得积分10
11秒前
Dandy完成签到,获得积分10
12秒前
丸子完成签到,获得积分10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015859
求助须知:如何正确求助?哪些是违规求助? 3555835
关于积分的说明 11318981
捐赠科研通 3288954
什么是DOI,文献DOI怎么找? 1812355
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027