Automatic grading of knee osteoarthritis with a plain radiograph radiomics model: combining anteroposterior and lateral images

医学 神经组阅片室 骨关节炎 接收机工作特性 逻辑回归 放射科 射线照相术 分级(工程) 磁共振成像 介入放射学 无线电技术 核医学 队列 膝关节 人工智能 外科 计算机科学 内科学 病理 替代医学 土木工程 工程类 精神科 神经学
作者
Wei Li,Jin Liu,Zhongli Xiao,Dantian Zhu,Jianwei Liao,Wenjun Yu,Jiaxin Feng,Baoxin Qian,Yijie Fang,Shaolin Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1): 143-143 被引量:13
标识
DOI:10.1186/s13244-024-01719-3
摘要

Abstract Objectives To establish a radiomics-based automatic grading model for knee osteoarthritis (OA) and evaluate the influence of different body positions on the model’s effectiveness. Materials and methods Plain radiographs of a total of 473 pairs of knee joints from 473 patients (May 2020 to July 2021) were retrospectively analyzed. Each knee joint included anteroposterior (AP) and lateral (LAT) images which were randomly assigned to the training cohort and the testing cohort at a ratio of 7:3. First, an assessment of knee OA severity was done by two independent radiologists with Kallgren–Lawrence grading scale. Then, another two radiologists independently delineated the region of interest for radiomic feature extraction and selection. The radiomic classification features were dimensionally reduced and a machine model was conducted using logistic regression (LR). Finally, the classification efficiency of the model was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Results The AUC (macro/micro) of the model using a combination of AP and LAT (AP&LAT) images were 0.772/0.778, 0.818/0.799, and 0.864/0.879, respectively. The radiomic features from the combined images achieved better classification performance than the individual position image ( p < 0.05). The overall accuracy of the radiomic model with AP&LAT images was 0.727 compared to 0.712 and 0.417 for radiologists with 4 years and 2 years of musculoskeletal diagnostic experience. Conclusions A radiomic model constructed by combining the AP&LAT images of the knee joint can better grade knee OA and assist clinicians in accurate diagnosis and treatment. Critical relevance statement A radiomic model based on plain radiographs accurately grades knee OA severity. By utilizing the LR classifier and combining AP&LAT images, it improves accuracy and consistency in grading, aiding clinical decision-making, and treatment planning. Key Points Radiomic model performed more accurately in K/L grading of knee OA than junior radiologists. Radiomic features from the combined images achieved better classification performance than the individual position image. A radiomic model can improve the grading of knee OA and assist in diagnosis and treatment. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
可爱丸子完成签到,获得积分10
1秒前
Rinamamiya发布了新的文献求助50
1秒前
头上有犄角bb完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
pluto应助fafafa采纳,获得10
4秒前
6秒前
7秒前
7秒前
8秒前
璟晔完成签到,获得积分10
9秒前
11秒前
11秒前
醉熏的伊完成签到,获得积分10
12秒前
南歌子完成签到 ,获得积分10
13秒前
grass发布了新的文献求助10
13秒前
酥瓜完成签到 ,获得积分10
15秒前
asdfzxcv应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
香蕉觅云应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
asdfzxcv应助科研通管家采纳,获得10
17秒前
17秒前
asdfzxcv应助科研通管家采纳,获得10
17秒前
asdfzxcv应助科研通管家采纳,获得10
17秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
香蕉觅云应助科研通管家采纳,获得10
18秒前
18秒前
Ava应助科研通管家采纳,获得10
18秒前
chen应助科研通管家采纳,获得10
18秒前
18秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
18秒前
asdfzxcv应助科研通管家采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838