Automatic grading of knee osteoarthritis with a plain radiograph radiomics model: combining anteroposterior and lateral images

医学 神经组阅片室 骨关节炎 接收机工作特性 逻辑回归 放射科 射线照相术 分级(工程) 磁共振成像 介入放射学 无线电技术 核医学 队列 膝关节 人工智能 外科 计算机科学 内科学 病理 替代医学 土木工程 工程类 精神科 神经学
作者
Wei Li,Jin Liu,Zhongli Xiao,Dantian Zhu,Jianwei Liao,Wenjun Yu,Jiaxin Feng,Baoxin Qian,Yijie Fang,Shaolin Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1): 143-143 被引量:13
标识
DOI:10.1186/s13244-024-01719-3
摘要

Abstract Objectives To establish a radiomics-based automatic grading model for knee osteoarthritis (OA) and evaluate the influence of different body positions on the model’s effectiveness. Materials and methods Plain radiographs of a total of 473 pairs of knee joints from 473 patients (May 2020 to July 2021) were retrospectively analyzed. Each knee joint included anteroposterior (AP) and lateral (LAT) images which were randomly assigned to the training cohort and the testing cohort at a ratio of 7:3. First, an assessment of knee OA severity was done by two independent radiologists with Kallgren–Lawrence grading scale. Then, another two radiologists independently delineated the region of interest for radiomic feature extraction and selection. The radiomic classification features were dimensionally reduced and a machine model was conducted using logistic regression (LR). Finally, the classification efficiency of the model was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Results The AUC (macro/micro) of the model using a combination of AP and LAT (AP&LAT) images were 0.772/0.778, 0.818/0.799, and 0.864/0.879, respectively. The radiomic features from the combined images achieved better classification performance than the individual position image ( p < 0.05). The overall accuracy of the radiomic model with AP&LAT images was 0.727 compared to 0.712 and 0.417 for radiologists with 4 years and 2 years of musculoskeletal diagnostic experience. Conclusions A radiomic model constructed by combining the AP&LAT images of the knee joint can better grade knee OA and assist clinicians in accurate diagnosis and treatment. Critical relevance statement A radiomic model based on plain radiographs accurately grades knee OA severity. By utilizing the LR classifier and combining AP&LAT images, it improves accuracy and consistency in grading, aiding clinical decision-making, and treatment planning. Key Points Radiomic model performed more accurately in K/L grading of knee OA than junior radiologists. Radiomic features from the combined images achieved better classification performance than the individual position image. A radiomic model can improve the grading of knee OA and assist in diagnosis and treatment. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我爱科研完成签到,获得积分10
刚刚
刚刚
1秒前
sci大户发布了新的文献求助10
1秒前
Doogie发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
LYB吕发布了新的文献求助10
2秒前
3秒前
RB发布了新的文献求助10
3秒前
乐乐应助lalala采纳,获得10
3秒前
4秒前
今天也要开心Y完成签到,获得积分10
4秒前
4秒前
Cassie发布了新的文献求助10
4秒前
asda发布了新的文献求助10
5秒前
王则华完成签到,获得积分10
6秒前
zyy发布了新的文献求助10
6秒前
6秒前
如意厉完成签到,获得积分10
7秒前
7秒前
大个应助魏映霞采纳,获得10
7秒前
Llllllllily应助欣喜十八采纳,获得10
8秒前
AN发布了新的文献求助30
8秒前
8秒前
1526完成签到,获得积分10
8秒前
vv发布了新的文献求助10
8秒前
酷波er应助花根采纳,获得10
9秒前
今后应助花根采纳,获得10
9秒前
明明完成签到,获得积分10
9秒前
西红柿发布了新的文献求助10
9秒前
DearJulie完成签到,获得积分20
9秒前
qinshimigyue完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
完美问玉完成签到,获得积分10
11秒前
huangyulin66发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608292
求助须知:如何正确求助?哪些是违规求助? 4692876
关于积分的说明 14875899
捐赠科研通 4717214
什么是DOI,文献DOI怎么找? 2544162
邀请新用户注册赠送积分活动 1509147
关于科研通互助平台的介绍 1472809