Automatic grading of knee osteoarthritis with a plain radiograph radiomics model: combining anteroposterior and lateral images

医学 神经组阅片室 骨关节炎 接收机工作特性 逻辑回归 放射科 射线照相术 分级(工程) 磁共振成像 介入放射学 无线电技术 核医学 队列 膝关节 人工智能 外科 计算机科学 内科学 病理 土木工程 替代医学 神经学 精神科 工程类
作者
Wei Li,Jin Liu,Zhongli Xiao,Dantian Zhu,Jianwei Liao,Wenjun Yu,Jiaxin Feng,Baoxin Qian,Yijie Fang,Shaolin Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01719-3
摘要

Abstract Objectives To establish a radiomics-based automatic grading model for knee osteoarthritis (OA) and evaluate the influence of different body positions on the model’s effectiveness. Materials and methods Plain radiographs of a total of 473 pairs of knee joints from 473 patients (May 2020 to July 2021) were retrospectively analyzed. Each knee joint included anteroposterior (AP) and lateral (LAT) images which were randomly assigned to the training cohort and the testing cohort at a ratio of 7:3. First, an assessment of knee OA severity was done by two independent radiologists with Kallgren–Lawrence grading scale. Then, another two radiologists independently delineated the region of interest for radiomic feature extraction and selection. The radiomic classification features were dimensionally reduced and a machine model was conducted using logistic regression (LR). Finally, the classification efficiency of the model was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Results The AUC (macro/micro) of the model using a combination of AP and LAT (AP&LAT) images were 0.772/0.778, 0.818/0.799, and 0.864/0.879, respectively. The radiomic features from the combined images achieved better classification performance than the individual position image ( p < 0.05). The overall accuracy of the radiomic model with AP&LAT images was 0.727 compared to 0.712 and 0.417 for radiologists with 4 years and 2 years of musculoskeletal diagnostic experience. Conclusions A radiomic model constructed by combining the AP&LAT images of the knee joint can better grade knee OA and assist clinicians in accurate diagnosis and treatment. Critical relevance statement A radiomic model based on plain radiographs accurately grades knee OA severity. By utilizing the LR classifier and combining AP&LAT images, it improves accuracy and consistency in grading, aiding clinical decision-making, and treatment planning. Key Points Radiomic model performed more accurately in K/L grading of knee OA than junior radiologists. Radiomic features from the combined images achieved better classification performance than the individual position image. A radiomic model can improve the grading of knee OA and assist in diagnosis and treatment. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助旦斯特尼采纳,获得10
1秒前
1秒前
好学者完成签到 ,获得积分10
2秒前
谨慎不二发布了新的文献求助10
7秒前
xiaojcom完成签到,获得积分10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
biopig应助科研通管家采纳,获得10
8秒前
CodeCraft应助科研通管家采纳,获得10
8秒前
ss完成签到 ,获得积分20
12秒前
12秒前
蛋壳柯完成签到,获得积分10
12秒前
14秒前
14秒前
14秒前
15秒前
xubee完成签到,获得积分10
16秒前
qq完成签到,获得积分10
16秒前
谨慎不二完成签到,获得积分10
17秒前
乐乐应助jiangjiang采纳,获得10
18秒前
blossoms完成签到 ,获得积分10
18秒前
司南完成签到 ,获得积分10
19秒前
20秒前
athena发布了新的文献求助30
20秒前
小志呀发布了新的文献求助10
20秒前
20秒前
20秒前
学术大白完成签到 ,获得积分10
24秒前
25秒前
旦斯特尼发布了新的文献求助10
25秒前
彭云峰发布了新的文献求助10
26秒前
26秒前
jie完成签到 ,获得积分10
26秒前
26秒前
28秒前
娇咩咩发布了新的文献求助10
28秒前
英姑应助你命网友采纳,获得10
28秒前
30秒前
oboul发布了新的文献求助10
31秒前
31秒前
阿盛完成签到,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134930
求助须知:如何正确求助?哪些是违规求助? 2785800
关于积分的说明 7774244
捐赠科研通 2441682
什么是DOI,文献DOI怎么找? 1298076
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825