清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Automatic grading of knee osteoarthritis with a plain radiograph radiomics model: combining anteroposterior and lateral images

医学 神经组阅片室 骨关节炎 接收机工作特性 逻辑回归 放射科 射线照相术 分级(工程) 磁共振成像 介入放射学 无线电技术 核医学 队列 膝关节 人工智能 外科 计算机科学 内科学 病理 替代医学 土木工程 工程类 精神科 神经学
作者
Wei Li,Jin Liu,Zhongli Xiao,Dantian Zhu,Jianwei Liao,Wenjun Yu,Jiaxin Feng,Baoxin Qian,Yijie Fang,Shaolin Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1)
标识
DOI:10.1186/s13244-024-01719-3
摘要

Abstract Objectives To establish a radiomics-based automatic grading model for knee osteoarthritis (OA) and evaluate the influence of different body positions on the model’s effectiveness. Materials and methods Plain radiographs of a total of 473 pairs of knee joints from 473 patients (May 2020 to July 2021) were retrospectively analyzed. Each knee joint included anteroposterior (AP) and lateral (LAT) images which were randomly assigned to the training cohort and the testing cohort at a ratio of 7:3. First, an assessment of knee OA severity was done by two independent radiologists with Kallgren–Lawrence grading scale. Then, another two radiologists independently delineated the region of interest for radiomic feature extraction and selection. The radiomic classification features were dimensionally reduced and a machine model was conducted using logistic regression (LR). Finally, the classification efficiency of the model was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Results The AUC (macro/micro) of the model using a combination of AP and LAT (AP&LAT) images were 0.772/0.778, 0.818/0.799, and 0.864/0.879, respectively. The radiomic features from the combined images achieved better classification performance than the individual position image ( p < 0.05). The overall accuracy of the radiomic model with AP&LAT images was 0.727 compared to 0.712 and 0.417 for radiologists with 4 years and 2 years of musculoskeletal diagnostic experience. Conclusions A radiomic model constructed by combining the AP&LAT images of the knee joint can better grade knee OA and assist clinicians in accurate diagnosis and treatment. Critical relevance statement A radiomic model based on plain radiographs accurately grades knee OA severity. By utilizing the LR classifier and combining AP&LAT images, it improves accuracy and consistency in grading, aiding clinical decision-making, and treatment planning. Key Points Radiomic model performed more accurately in K/L grading of knee OA than junior radiologists. Radiomic features from the combined images achieved better classification performance than the individual position image. A radiomic model can improve the grading of knee OA and assist in diagnosis and treatment. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
管靖易完成签到 ,获得积分10
17秒前
科研通AI6应助蟪蛄鸪采纳,获得10
22秒前
璇22完成签到 ,获得积分10
34秒前
我是笨蛋完成签到 ,获得积分10
39秒前
郑光英完成签到,获得积分10
43秒前
Hanqi完成签到 ,获得积分10
46秒前
李某某应助郑光英采纳,获得50
49秒前
明天更好完成签到 ,获得积分10
50秒前
chichenglin完成签到 ,获得积分10
57秒前
1437594843完成签到 ,获得积分10
58秒前
蟪蛄鸪发布了新的文献求助10
1分钟前
蟪蛄鸪发布了新的文献求助10
1分钟前
蟪蛄鸪发布了新的文献求助10
1分钟前
1分钟前
1分钟前
SUNNYONE完成签到 ,获得积分10
1分钟前
蟪蛄鸪发布了新的文献求助10
1分钟前
徐团伟完成签到 ,获得积分10
1分钟前
1分钟前
蟪蛄鸪发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
明亮紫易完成签到,获得积分10
2分钟前
2分钟前
蟪蛄鸪发布了新的文献求助10
2分钟前
王新彤完成签到 ,获得积分10
2分钟前
2分钟前
蟪蛄鸪发布了新的文献求助10
2分钟前
蟪蛄鸪发布了新的文献求助10
2分钟前
蟪蛄鸪发布了新的文献求助10
2分钟前
3分钟前
蟪蛄鸪发布了新的文献求助10
3分钟前
无辜的行云完成签到 ,获得积分0
3分钟前
3分钟前
蟪蛄鸪发布了新的文献求助10
3分钟前
松松完成签到 ,获得积分10
3分钟前
3分钟前
蟪蛄鸪发布了新的文献求助10
3分钟前
黙宇循光完成签到 ,获得积分10
3分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertebrate Palaeontology, 5th Edition 530
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5347144
求助须知:如何正确求助?哪些是违规求助? 4481482
关于积分的说明 13947783
捐赠科研通 4379576
什么是DOI,文献DOI怎么找? 2406480
邀请新用户注册赠送积分活动 1399093
关于科研通互助平台的介绍 1372027