已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automatic grading of knee osteoarthritis with a plain radiograph radiomics model: combining anteroposterior and lateral images

医学 神经组阅片室 骨关节炎 接收机工作特性 逻辑回归 放射科 射线照相术 分级(工程) 磁共振成像 介入放射学 无线电技术 核医学 队列 膝关节 人工智能 外科 计算机科学 内科学 病理 替代医学 土木工程 工程类 精神科 神经学
作者
Wei Li,Jin Liu,Zhongli Xiao,Dantian Zhu,Jianwei Liao,Wenjun Yu,Jiaxin Feng,Baoxin Qian,Yijie Fang,Shaolin Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1): 143-143 被引量:13
标识
DOI:10.1186/s13244-024-01719-3
摘要

Abstract Objectives To establish a radiomics-based automatic grading model for knee osteoarthritis (OA) and evaluate the influence of different body positions on the model’s effectiveness. Materials and methods Plain radiographs of a total of 473 pairs of knee joints from 473 patients (May 2020 to July 2021) were retrospectively analyzed. Each knee joint included anteroposterior (AP) and lateral (LAT) images which were randomly assigned to the training cohort and the testing cohort at a ratio of 7:3. First, an assessment of knee OA severity was done by two independent radiologists with Kallgren–Lawrence grading scale. Then, another two radiologists independently delineated the region of interest for radiomic feature extraction and selection. The radiomic classification features were dimensionally reduced and a machine model was conducted using logistic regression (LR). Finally, the classification efficiency of the model was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Results The AUC (macro/micro) of the model using a combination of AP and LAT (AP&LAT) images were 0.772/0.778, 0.818/0.799, and 0.864/0.879, respectively. The radiomic features from the combined images achieved better classification performance than the individual position image ( p < 0.05). The overall accuracy of the radiomic model with AP&LAT images was 0.727 compared to 0.712 and 0.417 for radiologists with 4 years and 2 years of musculoskeletal diagnostic experience. Conclusions A radiomic model constructed by combining the AP&LAT images of the knee joint can better grade knee OA and assist clinicians in accurate diagnosis and treatment. Critical relevance statement A radiomic model based on plain radiographs accurately grades knee OA severity. By utilizing the LR classifier and combining AP&LAT images, it improves accuracy and consistency in grading, aiding clinical decision-making, and treatment planning. Key Points Radiomic model performed more accurately in K/L grading of knee OA than junior radiologists. Radiomic features from the combined images achieved better classification performance than the individual position image. A radiomic model can improve the grading of knee OA and assist in diagnosis and treatment. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
沉默白猫完成签到 ,获得积分10
刚刚
刚刚
秋作完成签到,获得积分10
刚刚
3秒前
奥利奥爱好者完成签到,获得积分10
5秒前
pai发布了新的文献求助10
6秒前
浮浮世世发布了新的文献求助10
10秒前
caowen完成签到 ,获得积分10
10秒前
祗想静静嘚完成签到 ,获得积分10
11秒前
汉堡包应助魁梧的傲芙采纳,获得10
12秒前
CC完成签到,获得积分10
15秒前
QYQ完成签到 ,获得积分10
16秒前
棠臻完成签到 ,获得积分10
16秒前
光轮2000发布了新的文献求助10
17秒前
19秒前
深情安青应助xiao99采纳,获得10
20秒前
阳光的丝发布了新的文献求助10
21秒前
可爱的函函应助Jiang 小白采纳,获得10
21秒前
小马甲应助医学小牛马采纳,获得10
22秒前
26秒前
一枚小豆完成签到,获得积分10
27秒前
27秒前
PEIfq完成签到 ,获得积分10
28秒前
29秒前
xm完成签到 ,获得积分10
30秒前
33秒前
给我一篇文献吧完成签到 ,获得积分10
34秒前
Jiang 小白发布了新的文献求助10
34秒前
36秒前
37秒前
Zjjiinn发布了新的文献求助10
37秒前
momo发布了新的文献求助10
39秒前
水牛完成签到,获得积分10
39秒前
xiao99完成签到,获得积分10
39秒前
zhengzhao完成签到,获得积分10
39秒前
KiraShaw发布了新的文献求助10
39秒前
40秒前
田様应助Jiang 小白采纳,获得10
40秒前
xiao99发布了新的文献求助10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5542960
求助须知:如何正确求助?哪些是违规求助? 4629072
关于积分的说明 14610747
捐赠科研通 4570366
什么是DOI,文献DOI怎么找? 2505686
邀请新用户注册赠送积分活动 1483021
关于科研通互助平台的介绍 1454336