Automatic grading of knee osteoarthritis with a plain radiograph radiomics model: combining anteroposterior and lateral images

医学 神经组阅片室 骨关节炎 接收机工作特性 逻辑回归 放射科 射线照相术 分级(工程) 磁共振成像 介入放射学 无线电技术 核医学 队列 膝关节 人工智能 外科 计算机科学 内科学 病理 替代医学 土木工程 工程类 精神科 神经学
作者
Wei Li,Jin Liu,Zhongli Xiao,Dantian Zhu,Jianwei Liao,Wenjun Yu,Jiaxin Feng,Baoxin Qian,Yijie Fang,Shaolin Li
出处
期刊:Insights Into Imaging [Springer Nature]
卷期号:15 (1): 143-143 被引量:13
标识
DOI:10.1186/s13244-024-01719-3
摘要

Abstract Objectives To establish a radiomics-based automatic grading model for knee osteoarthritis (OA) and evaluate the influence of different body positions on the model’s effectiveness. Materials and methods Plain radiographs of a total of 473 pairs of knee joints from 473 patients (May 2020 to July 2021) were retrospectively analyzed. Each knee joint included anteroposterior (AP) and lateral (LAT) images which were randomly assigned to the training cohort and the testing cohort at a ratio of 7:3. First, an assessment of knee OA severity was done by two independent radiologists with Kallgren–Lawrence grading scale. Then, another two radiologists independently delineated the region of interest for radiomic feature extraction and selection. The radiomic classification features were dimensionally reduced and a machine model was conducted using logistic regression (LR). Finally, the classification efficiency of the model was evaluated using receiver operating characteristic curves and the area under the curve (AUC). Results The AUC (macro/micro) of the model using a combination of AP and LAT (AP&LAT) images were 0.772/0.778, 0.818/0.799, and 0.864/0.879, respectively. The radiomic features from the combined images achieved better classification performance than the individual position image ( p < 0.05). The overall accuracy of the radiomic model with AP&LAT images was 0.727 compared to 0.712 and 0.417 for radiologists with 4 years and 2 years of musculoskeletal diagnostic experience. Conclusions A radiomic model constructed by combining the AP&LAT images of the knee joint can better grade knee OA and assist clinicians in accurate diagnosis and treatment. Critical relevance statement A radiomic model based on plain radiographs accurately grades knee OA severity. By utilizing the LR classifier and combining AP&LAT images, it improves accuracy and consistency in grading, aiding clinical decision-making, and treatment planning. Key Points Radiomic model performed more accurately in K/L grading of knee OA than junior radiologists. Radiomic features from the combined images achieved better classification performance than the individual position image. A radiomic model can improve the grading of knee OA and assist in diagnosis and treatment. Graphical Abstract
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Double_N完成签到,获得积分10
1秒前
冰姗完成签到,获得积分10
3秒前
5秒前
Iris完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
7秒前
victory_liu完成签到,获得积分10
8秒前
Swait完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
18秒前
左白易发布了新的文献求助20
19秒前
21秒前
量子星尘发布了新的文献求助10
24秒前
Eugenia完成签到,获得积分10
24秒前
wangwangxiao完成签到 ,获得积分10
28秒前
28秒前
上官完成签到 ,获得积分10
32秒前
含光完成签到,获得积分10
32秒前
35秒前
量子星尘发布了新的文献求助10
35秒前
蓝莓酱蘸橘子完成签到 ,获得积分10
36秒前
36秒前
zenabia完成签到 ,获得积分10
38秒前
41秒前
Tangyartie完成签到 ,获得积分10
41秒前
量子星尘发布了新的文献求助10
42秒前
忧心的藏鸟完成签到 ,获得积分10
46秒前
欣喜的涵柏完成签到 ,获得积分10
47秒前
48秒前
50秒前
小石头完成签到 ,获得积分10
50秒前
谨慎翎完成签到 ,获得积分10
52秒前
ymr完成签到 ,获得积分10
54秒前
54秒前
Mason完成签到,获得积分10
54秒前
Mint完成签到 ,获得积分10
55秒前
量子星尘发布了新的文献求助10
56秒前
luffy完成签到 ,获得积分0
59秒前
59秒前
1分钟前
科研小趴菜完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764955
求助须知:如何正确求助?哪些是违规求助? 5557008
关于积分的说明 15406819
捐赠科研通 4899862
什么是DOI,文献DOI怎么找? 2636048
邀请新用户注册赠送积分活动 1584235
关于科研通互助平台的介绍 1539555