HDAC6型
陶氏病
肌萎缩侧索硬化
计算生物学
疾病
神经科学
组蛋白脱乙酰基酶
神经退行性变
医学
生物
组蛋白
遗传学
病理
基因
作者
Nasim Bahram Sangani,J.C. Koetsier,Jonathan Mélius,Martina Kutmon,Friederike Ehrhart,Chris T. Evelo,Leopold Curfs,Chris Reutelingsperger,Lars Eijssen
标识
DOI:10.1038/s41598-024-65094-1
摘要
Abstract Due to its involvement in physiological and pathological processes, histone deacetylase 6 (HDAC6) is considered a promising pharmaceutical target for several neurological manifestations. However, the exact regulatory role of HDAC6 in the central nervous system (CNS) is still not fully understood. Hence, using a semi-automated literature screening technique, we systematically collected HDAC6-protein interactions that are experimentally validated and reported in the CNS. The resulting HDAC6 network encompassed 115 HDAC6-protein interactions divided over five subnetworks: (de)acetylation, phosphorylation, protein complexes, regulatory, and aggresome-autophagy subnetworks. In addition, 132 indirect interactions identified through HDAC6 inhibition were collected and categorized. Finally, to display the application of our HDAC6 network, we mapped transcriptomics data of Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis on the network and highlighted that in the case of Alzheimer’s disease, alterations predominantly affect the HDAC6 phosphorylation subnetwork, whereas differential expression within the deacetylation subnetwork is observed across all three neurological disorders. In conclusion, the HDAC6 network created in the present study is a novel and valuable resource for the understanding of the HDAC6 regulatory mechanisms, thereby providing a framework for the integration and interpretation of omics data from neurological disorders and pharmacodynamic assessments.
科研通智能强力驱动
Strongly Powered by AbleSci AI