迭代学习控制
机器人
弹道
控制器(灌溉)
控制理论(社会学)
计算机科学
自适应控制
控制工程
机器人控制
人工智能
李雅普诺夫函数
移动机器人
控制(管理)
工程类
非线性系统
物理
天文
量子力学
农学
生物
作者
Yuting Guo,Guangzhu Peng,Dengxiu Yu,Chenguang Yang
标识
DOI:10.1109/icit58233.2024.10540707
摘要
A spatial iterative control method is developed for robots to interact with an unknown environment at a desired level. Motivated by the human adaptive behaviour, the developed robot controller can adapt its reference trajectory to maintain a desired interaction force by designing a learning law. Considering the uncertain dynamics of the robot, an adaptive control algorithm integrating neural networks is employed to enable the robot to track the reference trajectory, so that the interaction performance is achieved. Through Lyapunov theory, signals of the closed-loop system are analyzed and proven to be convergent. Simulation results exhibit that the learning controller for the robot has adaptive properties in contacting tasks.
科研通智能强力驱动
Strongly Powered by AbleSci AI