隐藏字幕
变压器
计算机科学
人工智能
网格
探测器
推论
计算机视觉
保险丝(电气)
可视化
目标检测
图像(数学)
模式识别(心理学)
工程类
电压
电气工程
电信
数学
几何学
作者
Van-Quang Nguyen,Masanori Suganuma,Takayuki Okatani
出处
期刊:Cornell University - arXiv
日期:2022-01-01
标识
DOI:10.48550/arxiv.2207.09666
摘要
Current state-of-the-art methods for image captioning employ region-based features, as they provide object-level information that is essential to describe the content of images; they are usually extracted by an object detector such as Faster R-CNN. However, they have several issues, such as lack of contextual information, the risk of inaccurate detection, and the high computational cost. The first two could be resolved by additionally using grid-based features. However, how to extract and fuse these two types of features is uncharted. This paper proposes a Transformer-only neural architecture, dubbed GRIT (Grid- and Region-based Image captioning Transformer), that effectively utilizes the two visual features to generate better captions. GRIT replaces the CNN-based detector employed in previous methods with a DETR-based one, making it computationally faster. Moreover, its monolithic design consisting only of Transformers enables end-to-end training of the model. This innovative design and the integration of the dual visual features bring about significant performance improvement. The experimental results on several image captioning benchmarks show that GRIT outperforms previous methods in inference accuracy and speed.
科研通智能强力驱动
Strongly Powered by AbleSci AI