Prioritization of potential drug targets in ovarian-related diseases: Mendelian randomization and colocalization analyses

孟德尔随机化 共域化 优先次序 药品 计算生物学 医学 生物 生物信息学 药理学 遗传学 神经科学 基因 遗传变异 工程类 管理科学 基因型
作者
Yanggang Hong
出处
期刊:F&S science [Elsevier]
标识
DOI:10.1016/j.xfss.2025.02.003
摘要

To identify key genes and potential drug targets for ovarian-related diseases through genome-wide Mendelian randomization (MR) and colocalization analyses. We conducted a comprehensive two-sample MR analysis to estimate the causal effects of blood expression quantitative trait loci (eQTLs) on ovarian-related diseases, followed by colocalization analyses to verify the robustness of the expression instrumental variables (IVs). Phenome-wide association studies (PheWAS) were also performed to evaluate the horizontal pleiotropy of potential drug targets and possible side effects. Publicly available genome-wide association study data. Large cohorts of European ancestry. The exposure in this study was the genetic variants (eQTLs) associated with gene expression levels, considered a form of lifelong exposure. eQTL data were obtained from the eQTLGen Consortium, encompassing 16,987 genes and 31,684 cis-eQTLs derived from blood samples of healthy individuals of European ancestry. The primary outcome measures were the identification of genes causally associated with ovarian-related diseases and the validation of these genes as potential therapeutic targets. Our study revealed that specific genes such as CD163L1, PPP3CA, MTAP, F12, NRM, BANK1, ZNF66, GNA15, and SLC6A9 were associated with ovarian endometriosis, ovarian cysts, and PCOS. Through MR and colocalization analyses, we identified potential drug targets, including CTNNB1, PTPN7, and ABCB4, with strong evidence of colocalization with ovarian-related diseases. Sensitivity analyses confirmed the robustness of our findings, showing no evidence of horizontal pleiotropy or heterogeneity. This research highlights the significance of precision medicine approaches in identifying genetic factors underlying ovarian-related diseases and provides a foundation for developing targeted therapies, enhancing diagnostic accuracy, and improving treatment strategies for ovarian-related diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
VLH发布了新的文献求助10
刚刚
刚刚
菜菜发布了新的文献求助10
刚刚
1秒前
一颗星发布了新的文献求助10
1秒前
椰子发布了新的文献求助10
1秒前
Mockingbird发布了新的文献求助10
1秒前
Ava应助耶耶耶采纳,获得10
1秒前
aga发布了新的文献求助10
2秒前
杨。。完成签到 ,获得积分10
2秒前
风中的怜阳完成签到,获得积分10
2秒前
3秒前
4秒前
正直未来应助一颗星采纳,获得30
4秒前
劲秉应助小周采纳,获得10
5秒前
5秒前
隐形曼青应助菜菜采纳,获得10
5秒前
刘清河发布了新的文献求助10
6秒前
神勇的雅香举报頑皮燕姿求助涉嫌违规
6秒前
lswhyr完成签到,获得积分10
6秒前
星辰与月完成签到,获得积分10
6秒前
高兴的羊完成签到,获得积分10
6秒前
群木成林完成签到,获得积分10
7秒前
Tyche发布了新的文献求助10
7秒前
Caroline发布了新的文献求助10
7秒前
南提完成签到,获得积分10
8秒前
8秒前
RR发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
lswhyr发布了新的文献求助10
10秒前
天天快乐应助耶耶耶采纳,获得10
10秒前
theThreeMagi发布了新的文献求助10
10秒前
一颗星完成签到,获得积分10
10秒前
omyga发布了新的文献求助10
10秒前
11秒前
搞怪网络完成签到,获得积分10
12秒前
12秒前
婷杰完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Theory of Block Polymer Self-Assembly 750
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3512007
求助须知:如何正确求助?哪些是违规求助? 3094539
关于积分的说明 9223579
捐赠科研通 2789383
什么是DOI,文献DOI怎么找? 1530667
邀请新用户注册赠送积分活动 711041
科研通“疑难数据库(出版商)”最低求助积分说明 706513