记忆电阻器
分段线性函数
加密
计算机科学
算法
人工神经网络
分叉
实现(概率)
拓扑(电路)
分数阶微积分
分段
控制理论(社会学)
数学
非线性系统
应用数学
人工智能
电子工程
数学分析
工程类
物理
组合数学
操作系统
控制(管理)
统计
量子力学
作者
Chaojun Wu,Junxuan Guo,Ningning Yang,Zheyuan Zhang
标识
DOI:10.1142/s0218127425500658
摘要
This paper introduces a novel three-neuron memristive synaptic coupling Piecewise-Linear Hopfield Neural Network (PWL-HNN) and extends it to fractional order. This study delves into studying the dynamical behaviors of the fractional-order memristive PWL-HNN using bifurcation diagrams, largest Lyapunov exponential spectra, Poincaré cross-sections, attraction basins, and two-parameter bifurcation diagram, and exploring variations in PWL activation function parameters, memristive coupling strengths, and initial conditions. Subsequently, an equivalent circuit model of the fractional-order memristive PWL-HNN on the Cadence/PSpice platform is developed, verifying its dynamic behavior through circuit simulation experiments. Additionally, a digital circuit of the fractional-order memristive HNN model is implemented on the LabVIEW platform, with NI PXIe equipment utilized for hardware circuit realization. The experimental results align closely with numerical and circuit simulation results, affirming the theoretical analysis’s accuracy. Lastly, this paper investigates the generation of a pseudo-random sequence using fractional-order memristive HNN and explores an image encryption algorithm in conjunction with the DNA algorithm, assessing the encryption algorithm’s reliability through security analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI